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. ANALYTICAL INVESTIGATION OF SOME THREE-DIMENSIONAL

FLOW PROBIEMS IN TUIU30MACHINES

By Frank E. Marble and Irving Michelson

One problem encountered in the theory of turbomachines is that of
calculati-~ the fluid velocity components-when the inner and outer
boundaries of the mac~ne as well as the shape of or forces imparted by
the blade row are given. The present paper discusses this problem under
the restrictions that the fluid is inviscid and incompressible and that
the blade rows consist of an infinite number of infinitely thin blades
so that axially symmetric flow is assumed.

It is shown, in general, that the velocity components in a plane
through the turbomachine axis may be expressed in terms of the angular
momentum and the leading-edge blade force normal to the stream surfaces.
The relation is a nonlinear differential equation to which analytic solu-
tions may be obtained conveniently only after the introduction of linea-
rizing assumptions. A quite accurate linearization is effected through
assuming an approximate shape of the stream surfaces in certain nonlinear
terms.

The complete linearized solution for the axial turbomachine is
given in such form that blade loading, blade shape, distribution of

mar momentum, or distribution of total head may be prescribed. Cal-
culations for single blade rows of aspect ratio 2 and 2/3 are given for
a radius ratio of 0.6. They indicate that the process of formation of
the axial velocity profile may extend both upstream and downstream of
a high-aspect-ratio blade row, while for low aspect ratios the major
portion of the three-dimensional flow occurs within the blade row itself.
When the through-flow velocity varies greatly from its mean value, the
simple linearized solution does not describe the flow process adequately
and a more accurate solution applicable to such conditions is suggested.

The structure of the first-order linearized solution for the axial
turbomachine suggested a further approximation employing a minimizing
operation. The simplicity of this solution permits the discussion of
three interesting problems: Mutual interference of neighboring blade
rows in a multistage axial turbomachine, solution for a single blade
row of given blade shapej and the solution for tms blade row oPeratQ3
at a condition different from the design condition.

..— ._ .—



2 MICATN 2614

It is found that the”interference of adjacent blade rows in the .
multistage turbomachine may be neglected when the ratio of blade length
to the distance between centers of successive blade rows is 1.0 or less.
For values of this ratio in excess of 3.0, the interference maybe an !)

important influence. The solution for the single blade row indicated
that, for the blade shape considered, the distortion of the axial
velocity profile caused by off-design operation is appreciably less for
low- than for high-aspect-ratio blades.

To obtain some results for a tied-flow turbomachine comparable
with those for the axial turbomachine as well as to indicate the essen-
tial versatility of the method of linearizing the general equations,
completely analogous theoretical treatment is given for a turbomachine
whose inner and outer walls are concentric cones with comnon apex and
whose flow is that of a three-dtiensional source or sM. A pSX’tiCti~
example for a single rotating blade row is discussed where the angular
momentum is prescribed similarly to that used”in the examples for the
axial turbomachine.

INTRODUCTION

Early investigations of the flow through turbomachines were con-
cerned primarily with the flow through a typical amnulus of small radial
extent and hence treated the flow as essentially two-dimensional. The
work of Betz (reference 1), Weinig (reference 2), and Keller (refer-
ence 3) employs this approach and is of particular importance inasmuch
as it emphasizes the aerodynamic concepts of the blade-airfoil sections
and airfoil cascades in contrast with the older but still.useful point

.

of view which regards the space between two blades as a sort of channel
and treats the flow accordingly. Out of the aerodynamic approach grew [>

the present extensive theoretical literature on arbitrary airfoil grids
or cascades characterized by the work of Kawada (reference k), Pistolesi
(reference 5), Garrick (reference 6), and Lighthill (reference 7).
These concepts have also exerted considerable influence on the experi-
mental tivestigation of turbomachines, for much of the useful experi-
mental hformation has appeared as results of tests on atrfoil cascades
such as those of Clristiani (reference 8), SMmoyama (reference 9), and
I?agdonoff(reference 10).

This “annulus” theory of turbomachines assumes negligible inter-
ference between the flow in adjacent and neighboring annular regions.
Such conditions are fulfilled rigorously only in the so-called vortex
turbomachine, in which the tangential velocity distribution is every- .
where that of a potential vortex. The behavior of a blade operating
in or imparting this type of flow has certain properties in common with

.

the rectilinear flow past a uniform infinite ~ in that no trailing
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vortices are shed in either case, the
being irrotational. The flow in this

— ..—
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flow downstream of the airfoils
variety of turbomachine is

restricted to one of constant stagnation enthalpy in any plane normal
to the axis of revolution apd to the particular distribution of tan-
gential velocity. This is a rather severe Mmitat ion and more general
distributions of both enthalpy and tangential velocity seem very
desirable.

Complications in the more general treatment arise, however, because
a variation of stagnation enthalpy in the radial direction or a varia-
tion of the tangential velocity from ‘thatof a potential vortex usually
implies a variation of the axial velocity. Consequently, although it
seems reasonable that the results of the caseade theory and experiment
are nearly valid for this case, there is a question as to the free-stream
flow in which the cascade should be situated so as to correspond with the
local conditions it experiences within the actual turbomachine. The
estimate of the effective free-stream flow consists largely in estimating
the local distribution of axial velocity. A need for this estimate was
recognized by workers in the field and treated analytically by several,
among whom were Traupel (reference n), Rannie (in unptilished reports),
Eckert and Korbacher (reference 12), and Sinnette (reference 13).

W these investigationsthe distribution of axial velocity is
approximated by assuming axial symmetry (that”is, an actuator disk
theory where the flow is generated by an Minite numiberof blades of
either negligible or finite chord) smd neglecting the effects of radial
acceleration of the fluid. Then the centrifugal force within the
rotating fluid body is balanced by only the radial pressure gradient.
The flow calculated in this manner is in reality that which exists faz
downstream of the blade row where radial velocities and accelerations
have vanished. Unfortunately this analysis does not provide informa-
tion on how rapidly the change in velocity pattern takes place as the
fluid passes the blade row. It is clesx that a portion of the change
of axial velocity takes place before the blade row is encountered in
a manner similar to the change in axial velocity which takes place ahead
of the disk of a free propeller (’reference14). The velocities involved
are those induced by either the bound or trailing vortex system. This
vortex system was discussed by Ruden (reference 15), but he carried out
no detailed calculations based on his vortex picture.

The first detailed aualysis of the three-dtiensional flow in turbo-
machines was given by Meyer (reference 16) in his consideration of the
flow through a stationary blade row. Meyer gives the solution for
the blade row which sheds no trailing vorticity although the flow may
be rotational and of a complicated nature within the blade row. The
modification caused by a finite number of blades is also treated. The
method used by Meyer depends upon the fact that the problem may

—. . —
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be linearized within the blade row. A method for treating the problem .
where neither blade shape nor boundary contour is prescribed in advance
has been discussedby Dr. H. Reissner (reference 17).

*

To allow at least an approximate treatment of the general blade
row with prescribed wall geometry, a linearized analysis of the problem
was proposed (reference 19) where the trailing vorticity is supposedly
transported by the mean axial velocity, and the blade row is made up of
an infinite nuniberof blades of finite chord. In a sense, this inves-
tigation was complementary to that of Meyer. The analysis for the
inverse problem, in which the blade forces are prescribed, was carried
out in detail and was found to allow a reasonably simple general
solution.

The results indicated that for blades of large aspect ratio the
rate of formation of the velocity profile could be of importance in the
three-dimensional flow process and in the blade design. Consequently,
it seemed desirable to extend the analysis to further problems where
P~ic~Y ~rtant restits cotid be obtained even under the severe
limitations of @inite blade number, inviscid fluid, and so forth.
Such problems include the direct problem, off-design operation, and
titerference in a multiple-blade-row machine. The work which has been
done toward this end is described in the present paper.

The original analysis of the ltiearized theory was presented in a
somewhat inconvenientmanner for the purpose of allowing physical inter-
pretation of some of the mathematical steps. For the sake of complete-
ness in the present work, the analysis of the inverse problem is pre-
sented, but in a more concise form - one which also allows a direct
extension to a linearized version of the direct problem. That such an
extension should be possible is almost self-evident. For, if a solu-
tion exists for the case where the force components are prescribed, it
is no ~eat modification to give the solution when the components of
the blade normal, proportional to the force components, are prescribed.
The normal to the blade has a condition to be satisfied which is related
to the fact that the elements of the blade nmst fit together so as to
form a continuous surface. This restricts somewhat the independence of
choosing the distribution of the blade normal and it has been pointed
out by Bauersfeld (reference 19) that this same restriction also limits
the choice of the force distribution.

.

The computation involved in finding the three-dimensional flow in
any particular case is rather lengthy and not of a particularly simple
nature because of the Bessel functions Wtroduced by the cylindrical
boundary. Using the Greents function formulation for the solution,

.
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it becomes a rather shnple matter to set up a numerical-integration
method suitable for use on a punch-card machine. The numerical inte-
grations were carried out by Mr. William Chaplin of the Southern
California Cooperative Wind Tunnel and Mr. Thomas Vrebalovich of the
Ten-Foot Wind Tunnel at the California Institute of Technology. Using
this method, examples have been computed for blades of both high and
low aspect ratio. Clearly the accuracy of such a linearized process
is always open to question because there exists no general manner of
making a positive estimate of the error involved in the approximations.
Fortunately, however, Bragg and Hawthorne (reference 20) have recently
discussed a problem which may be employed to give a check in one par-
ticular c-e. The problem solved by these authors is that of calculating
the velocity induced by a distribtiion of vorticity which satisfies the
equations of nmtion and is therefore an exact solution for some partic-
ular blade loading. It seems appropriate to find, a posterior, the

mar moment~ distribution corresponding to this solution and then
to solve the corresponding linear problem. The results would constittie
a direct check on the accuracy of the linearized solution in one par-
ticulsx case. This analysis is not carried out here.

The flow calculated by the linearized approxhation has, however,
a curious characteristic which renders it inadequate for a particular
but rather important problem. This difficulty appears when one solves
the direct problem and notes that the interaction between the blade
row and the fluid is not modified by changes in the axial velocity pro-
file far upstream of the blade row. This is, of course, the direct
result of the assumption that all variations in the axial velocity are
small. However, problems arise in multistage turbomachines where the
sxisl velocity variations may become appreciable and hence the linearized
solution omits the factor of primary importance: The effect of con-
tinual variation of axial velocity upon the response of the flow to a
given blade row. To cope with this difficulty, a solution is worked
out which includes the first-order variation of the axial velocity and
allows treatment of the above problem. In spite of the ticreased com-
plexity of the calculation, it is still possible to employ the same
general numerical method used in the simpler approximations.

Although the mathematical content of the linearized solution is
simple, the amount of labor involved in achieving the solution to even
a simple problem is somewhat forbidding. Furthermorej the results
appear either as a rather complicated expression or in the form of
tables and curves, neither of which allows much further analysis. Con-
sequently, it was attempted to find a solution which, although still
less exact, possessed a simple closed form in terms of elementary func-
tions. The exponential approximation, introduced in reference 18,
aweared to compare most favorably with the detailed results of the
linearized solution. Its extreme simplicity makes it most useful and

.
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in the present
turbomachines,
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paper its application is extended to multistage axial
to the direct problem, and to off-design operation. The

results indicate it to be particularly well-suited to the study of
mutual interference of neighborhg blade rows.

It is recalled that the general philosophy on which the linearized
solution was based was simply that the vorticity could be considered
to be transported with the mean flow and not by the perturbation veloc-
ities; that is, disturbances in the radial and axial velocity =e small
in comparison with the mean axial velocity. There is clesrly nothing
singular about the application of this principle to axial flow and
in particular it is possible to use it in the study of the so-called
mixed-flow turbomachine. The solution has been obtained for a turbo-
machine whose walls consist of two cosxial cones and whose mean flow
is that of a source or sink. The linearized solution is developed in
anslogy with that previously undertaken for the axisl turbomachine.
The mixed-flow problem introduces only the additional.complication that
the tangential vorticity component, which produces the variation in the
through-flow velocity, varies as it is transported downstream because
of its continual change of radius.

The approximationswhich are made in the following work render the
methods inappropriate for the treatment of some very important turbo-
machine problems. It is clear that at some point the effects of vis-
cosity must become of considerable influence in multistage machines.
The importance of this phenomenon was recognized by Weske (reference 21)
and has been observed by Ramnie and his coworkers (reference 22). It
appeared from Rann.ietsinvestigations on a three-stage axial compressor
that the fine details of”the axial velocity profile could be obscured
by wsll boundary layer and blade wakes. Hence it seems likely that
more realistic considerations of some multistage turbomachtie problems
should account at once for viscosity effects. However, it is equally
clesr, therefore, that the large class of problems which msy logically
be treated under the assumptions of perfect fluid and infinite blade
number need be carried only to an accuracy necessary to investigate the
phenomenon and to explore its magnitude.

The work described in this report was carried out under the spon-
sorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOIS

r,e,z

u

cylindrical coordinates

velocity in direction r

—— .—.
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v

w

43

nz

a

B

Jo

Y~

31

Y1

U.

%

‘n

b

velocity in direction 13

velocity in direction z

vorticity in direction

vorticity in dfiection

vorticity in direction

blade force impacted in

blade force impacted in

blade force impacted in

r

e

z

direction r

direction 6

direction z

component of blade surface normal in direction r

component of blade surface normal in direction G

component of blade surface normal in direction z

variable of integration corres~nding to variable r

variable of integration corresponding to variable z

Bessel function of first kind and order zero

Bessel function of second kind and order zero

Bessel function of first kind and order one

Bessel function of second kind and order one

linesr combination of Bessel function of order zero

~o(enr)y~(~nr~) - ‘~(enrl)yo(enr))

linesr combination of Bessel function of order one

@l(’nr)yl@nrl) - Jd’dwd)
characteristic number for Bessel function U1

norm of Bessel function U1

.——.— —.— .—- —-——— — —
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G(r,z; a,~)
K(r,z; a,~)

1

P

P

w

kernels arising in integral expression for stresm
function in cylintiical coordinates

fluid static pressure

(fluid total pressure p + ~ p(up + # + +))

fluid density

fluid total head (P/p)

angular velocity of blade row

stresm function in cylindrical coordinate system

velocity in meridional plane, cylindrical coordinates

distance measured along stream surfaces in meridional
plane

spherical.polar coordinates

velocity in radial direction R

longittial velocity (*out polar axis) in
direction 6

azhuthql velocity (away from polar axes) in
direction #

vorticity component in direction of R

vorticity component in direction of 0

vorticity component in direction of @

Cos al

blade force in dtiection of @

associated Iegendre function of first kind,
degree ni

.

—
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associated Legendre function of second kind,
de~ee ni

linesr combination of associated Legendre functions

( m(p)qp(~l)‘% - .Pni(l)(pl)Q#(v))

dimensionless form of $

characteristic numbers for Hni(P)

norm of Legendre function Hni(~)

kernel arising in integral expression for stream
function in polar coordinates

stream function in polar coordinates

velocity in meridional plane, polar coordinates

ratio of blade length to projection of actual blade
chord upon meridional plsne

projection of actual blade chord upon meridional plane
referred to as %lade chordll

distance from leading edge of one blade row to
leading edge of following blade row

distance from
edge

blade spacing

center of blade loading to trailing

ratio
Pi “)

number of blade rows in a multistage turbomachine

constants

sngle between blade-row trailing edge and plane normal
to turbomachine axis

impulse function which haa value unity in region
P- 5/2J @ + ?3/2 and vsmishes elsewhere

— .—.—- ..— ——
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Subscripts:

k

s

$

0’

1

2

r

e

z

#

T

Superscripts:

(1)

- (2)

(3)

*

N/VWm 2614

blade row number in axial-flow turbomachine

along stream surface in meridional plane

normsl to stream surfaces

zeroth approximateion

turbomachine blade root

turbomadine blade tip

component in radial direction (cylindrical
coordinates)

component about axis of symmetry (cylindrical
coordinates)

component along axis (cylindrical coordinates)

component h direction @

components of the trailing edge of blade row

uniform flow in absence of blade rows

deviations from uniform based on simple radisl
equilibrium

deviation of flow caused by finite radial acceleration

conditions for which blade row b question was
designed

Mathematical symbols:

[1 Swacrossadisconttitityof value of quantity
included in bracket

Sgn( ) algebraic sign of quantity included in parentheses

RZ( ) - real part of quantity included in parentheses

-.
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modulus or absolute value of quantity

mean value

DESCRIPTION OF FIOW THROUGH A TUR130MACHINE

The problem of three-dimensional flow through a turbomachine will
be studied by idealizing the problem to one involving the flow of a
perfect fluid between two infinite concentric surfaces of revolution.
For simplicity these surfaces may be visualized as circular cylinders
as indicated in figure 1, although the treatment is general. It iS
convenient to employ a system of cylindrical coordinates r, 13,
and z, and to denote the velocity components in each of the coordinate
directions as u, V5 and w, respectively. h the following analysis
it will be assumed that the flow is axially syuunetric,and consequently
all partial derivatives with respect to the angular variable e will
vanish. This is physically equivalent to assuming that the flow pre-
scribed far upstream of any blade row is axially symmetric and that the
blade rows are made up of &
blades. As a consequence of
may be written in the form

infinite number
axial symmetry,

of similar infinitely thin
the vorticity components

1 (1)

Now it is well-known (reference 24) that a knowledge of the vor-
ticity distribution and appropriate boundary conditions is equivalent to
a lmowledge of the velocity distribution. As in the case of the f@ite
wing, it is advantageous to work with the vorticity components because
of the simple conservation properties they possess and to calculate the
complete velocity field from the velocity fields associated with the
individual vorticity components. Itromthe assumption of axial symmetry,
it is clesr (fig. 2) that only tangential velocity is inducedby the
radial and axial vorticity components while both radial and axial
velocities are associated with the tangential component of vorticity.
This relationship is clarified by the introduction of a stream function.
Because of axial symmetry, the continuity equation is simply

*

———— -—— —-— ———
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and is identically satisfied by choosing the stream function W(r,z) .

1 i3$- 1 av As a consequence, thewith the properties u = — — and w = - — —.
r 8Z r &

flow maybe described kinematicallyby the stream function $ and the
tangential velocity component v. The tangential vorticity is therefore
expressed in terms of the stream function

(3)

When the distribution of tangential vorticity is lmown together with
the appropriate boundary conditions, the stream function maybe found
through solution of the partial differential equation (3).

As yet only the kinematics of the flow have beericonsidered, and
it is obvious that the distribution of the tangential vorticity may
not be prescribed arbitrarily but rather only under the dynsmical
restrictions imposed by the equations of motion. If the total head,
the equivalent of total enthalpy for an ticompressible fluid, is denoted

in the conventional fashion H s ~ s ~ +
U2+V2+W2 where p

is the
P 2

10CSL fluid pressure, the Nerian equation maybe written, taking
account of the axial symmetry, in the form

The force components exerted by the blade row are denoted Fr, Fe,
Fz“

(4)

.

(5) -

(6)

b the following analysis it will be convenient to express deriva-
tives along and normal to the stream surfaces ~ = Constant in terms
of the usual derivatives in the axial and radial directions. If s
denotes the distsnce along a given stream surface (fig. 3) messured
from an arbitrary point and Vs the meridional velocity along a given

.

-——
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.

stream surface, then these directional derivatives are most conveniently
expressed

and

a Wa+ua.—— ——
‘Vsxi-= vs & VS az

(7)

(8)

Multiplying the first equation of motion (equation (4)) by u and the
third equation of motion (equation (6)) by w, adding the results, and
taking account of the transformation equation (7), it follows that

Further simplifying the right side
equation of-motion-(equation
stream surfaces becomes

(5)),

WFZ) + v(u[ - w~~

of this relation by
the change of total

Therefore the totsl head remains constant
the force system vanishes as it does, for
rows. The force system Fr, Fe, or Fz,

)+WFZ

along strea

use of the second
head along the

(9)

surfaces when
example, outside of blade
however, is not completely

arbitrary but is restricted to’be one that can be imparted by a set of
solid surfaces in an ideal fluid. Because of the vanishing shearing
stress, the force exerted on the fluid by a surface must be normal to
the surface; that is, it must be caused by a pressure difference. How-
ever, the fluid velocity relative to the blade is parallel to the blade
at the surface (fig. 4) and consequently is normal to the force exerted
by the blade. The Hnematic condition on the force vector Fr) Fe,

or F= is then that it be normal to the relative velocity past the

blade. For the turbomachine problem, the only possible motion of the
blade row is a rotation about the axis of symmetry so that the velocity

—— — ——— — ——.
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components relative to a blade row rotating with an angular velocity u
are u,v - U, and W. The condition that the force be normal to the
relative velocity is simply

and consequently
it is clear from

uFr+(v- ar)Fe + Wl?z= O (10)

the three force components are not independent. Then
equations (9) and (10) that

( 11)

Now, more precisely, it appears that the total head is invariant along
stream surfaces when either the tangential force component or the
angular velocity of the blade row vanishes.

The total head is not the only quantity with such invariant prop-
erties, for the second equation of motion may be written

= rFe (12)

The term vr is equivalent to the local moment of momentum by virtue
of the axial symmetry. It follows from equation (12) that the moment
ofmomentum about the symmetry axis is also invariant along stream
surfaces outside of any blade row and within the blade row changes at
a rate proportional to the moment of the tangential blade force.

By comparisonof equations (il.)and (12), it is seen that

aH_a
as ~ (UDW),and therefore the total head can differ from the term

m by, at most, a quantity depending tiponthe stream function alone.
Hence it is possible to write H = U.U’V+ F($) although it is “morecon-
venient to write this in the form

H- Hk(y) = m[n - (z-v)k]

.—

(13)

———
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where Hk($) and (~)k are the values of the total head and angular

momentum in the region between the Mh and (k . l)th blade rows (fig. 5)
and equation (13) is then valid between the (k - l)th and (k + l)th
blade rows.

The problem still at hand, however, is to express the tangential
Vorticity q in terms of dynamical variables by means of the equations
of motion (4) to (6;. Some prowess in this direction may be made by
Computhg the variation of tot~ head no- to
according to equation (8). Then, utilizing the

:= S[W$+U:)

the stream surfaces
equations of motion,

(14)

However

where F is the

%“* ‘s
in the meridional
in the form

UFz - wFr

V8
= FW

force component normal to the stream surfaces and

the total velocity component along the stream surface

plane. The tangential vorticity may then be expressed

(15)

of which Bragg and Hawthorne (reference 20) he given the special case
which is valid outside the blade row. Equation (15) is equivalent to
the expression obtained for the tangential vorticity in reference 18,
for if the total head be written in terms of the angular momentum

(I.-&m
3+

- U@;(w) - *+ .,(v)
r

which upon linearization reduces to the form previously given.

(16)

—–— --——— -—- ——— —— ———



16 NACA TN 2614

In addition to equation (10), there exists another condition among
the blade forces TThiCharises from the fact that these forces must be
produced by a series of continuous blade surfaces. The forces must be
normal to the blade surface as well as to the stream surfaces and an
additional limitation is thereby imposed on the prescribed force system.
If f3(r,e,z) is a function which is constant along the blade surface
and such that /grad p! = 1, the unit nom@ to the surface is given
by grad p. Therefore if A(r,z) is the blade loading or magnitude of
the blade force, the blade force vector may

~= X(r,z)grad P

from which it follows that

F= curlF=o

Expressed in terms of derivatives along and
this condition is

be written

(17)

normal to the stream surfaces,

where, utilizing equation (10) to express the right side of this relation,

:(*)=-WAT2) (18)

It now appears that the force component Fti is not independent of the
angular momentum vr. In fact, upon integration along a streamline and
substituting for Fe from equation (12),

(19)

The integration with respect to s begins at the leading edge of the
blade for each stream surface and this is indicated by the lower limit so.
(Since the origin of s is undefined, it is conveniently taken at the
blade leading edge in order that so -0.) The significance of the
function A(V) is now clarified. At the leading edge, the initial
value of the loading is given by

.

.

——

a(vr)
-rVs2A(~)—

as
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.

.

.

.>

.

If, in particular, the blade leading edge is a radial line, then F~ = O
and A(v) vanishes. The function A(w) is indicative of the leading-
edge shape.

In its general
stream function may

form, the differential-inte~al equation for the
be Mitten

where

I!ecauseof the manner in which the stream function enters on the
right side of equation (20), the problem is usually nonlinesr. singular
cases where it becomes linear with no approximation have been discussed
in reference 20. The boundary conditions for the equation are given
values of the stream function y on the inner and outer surfaces and
complete information on the strem function fsr ahead of the blade row.
In general, very little information may be prescribed far downstream of
the blade row except for special geometv of the inner snd outer bounding
surfaces. When the boundaries are cylindrical, for example, the radial

velocity vanishes ($:=0) both far upstream and far downstream of

the blade row. To specify the problem completely it is necessary also
to prescribe sufficient information to determine the left side of equa-
tion (20) as a function of r, Z, and ~. From the knowledge of flow
conditions upstream, g($) is fixed and the remaining information may
be prescribed in several ways. The two genersl physical problems lead
to:

(1) Prescribing some combination
angular momentum distribution. These
inverse problem; within the frsmework
identicsl.

(2) Prescribing the shape of the
problem.

of blade forces, total head, and
problems will be denoted the
of linearized theory they are

blade. This is known as the direct

— ..——..— ——
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Because of the nonlinearity of the differential equation (20), it
is difficult to discuss whether or not a given boundary-value problem
leads to
problems
has been

The

a solution. Therefore the mathematical formulation of these
will be deferred until the discussion of the linearized theory
completed.

LDWWRUED PROB13M FORAXUL TUREOMACHINE

nonlinearity which occurs on the right side of the fundamental
differential equation (20) is an expression of the physical fact that
the angular momentum, the total head, and consequently the tangential
vorticity component possess simple conservation properties (equa-
tions (1.1)ad (12)) slong stresm surfaces - surfaces which are not
lmown umtil the problem is solved. The method of linearization which
naturally suggests itself is that of substituting for the stresm func-
tion on the right side of equation (20) an approxhate value given in
terms of the independent variables r and z. Then equation (20)
becomes a well-known inhomogeneou.slinear differential equation. The
substitution of an approximate stream function @lies the physical
approximation that the simple consenation relations hold, not along
the ultimate stream surfaces but rather along a set of predetermined
surfaces which from llphysicalintuitionltpromise to be reason~ly close
to the true stream surfaces. Thus, as in most approx-te processes,
physical-jud~ent plays an important role in determining the final
accuracy. For, if the approximation chosen for the stream function
happened to be the correct one, the resulting solution would be exact,
and, as the approxhate stresm function differs more”from the true one,
it is expected that the result will differ-more from the exact solution.

For the solutions of the axial turbomachine, it is reasonably accu-
rate, particularly
close to unity, to
turbed mean flow,

where W. is the

and the direction

when the ratio of the inner to outer diameters-is
approximate the stresm function as that of the undis-

W=wo

Wo2= -—
2

(a)

average through-flow

~f the normal to the
right side of equation (20) simplifies

a% lav+a%. vr-d—-— —

ar2 r &. azp ‘o

velocity. Then since d$ = -wor h

stresm surfaces is radial, the
to give

a(m) ‘Fr— -— + ~gl(r)
r&wO

(22)

.

—
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where

19

.

.

[2 -r(.~,25;-Fr = rwo A’(r)

—

a(w)
az (23)

A1(r) SA($o)

In accordance with this approximation, the total head, moment of momentum,
and tangential vorticity remain constant along circular cylinders outside
the blade rows and vary in a hewn manner within the blade rows. In the
language of wing theory the vorticity trailing from the blade row is
transported by the mean velocity W. and not by its own induced velocity.

The linearized equation (22) is simply a linear second-order equa-
tion of the elliptic type with an inhomogeneous term which depends upon
the conditions prescribed on the blades and far upstream of the blades.
The inner and outer boundaries are concentric cylinders of radii rl

and r2, respectively, on which the stream function is constant. Fur-

ther, because of the wall geometry, it is clear that the rddial velocity
vsnishes at z = im. Then the boundary conditions on the walls may be

given as

~(rl,z) = O

/r02 - r.2\

\
qr2,z) = -W. = ~ L ]

where W. is the mean axial velocity, while

of any blades

$3-=42!!
=0

1
}

(24)

I
/ J

far upstream and downstream

(25)

The prescribed velocity components far upstream w(r,-rn) and v(r,-w)
and a tiowledge of angular momentum change across each of the blade
rows preceding the one under consideration deteme the f~ction gl(r)

‘O ~r~k(vo) + ‘($0]
r2gl(r) = -—— (26)

. . .—— -— -- -— .— ——
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The manner in which the remaining terms of the right-hand side are
determined depends upon whether the blade forces, the distributions of
angular momentum or total head, or the blade shapes are the given data
of the problem. It is assumed that the angular velocity u is alwsys
given. Possible methods of prescribing sufficient data are:

(1) Angular momentum and leading-edge load given as functions o.f r
and z. With these data the right side of equation (22) is known and
the mathematical problem is complete.

(2) Total-h:: di~;ibution snd leading-dge load given as functions
of r and Z. s Hk($) - ~(n)k) the relation between the

total head snd sngular momentum, equation (13), may be introduced into
equation (15) to give

(2’7)

With the linearizing approximation, this gives

Likewise the value of Fr is fixed according to equation (23) by pre-
scription of the leading%dge force, the angular momentum being known
in terms of the prescribed distribution of total head. Therefore the
right side is again knuwn and the mathematical problem is complete. .

(3) me tistrilmtim of blade loading given as a function of r
Snd z. There is a relation between the forces and the velocity com-
ponents (equation (10)) which expresses the fact that the force exerted
by the blade is normal to the relative fluid velocity past the blade.
In terms of the stream function this relation is

I

I av 1av—— Fr+(V-~)FG--—Fz .O
r az r &

which, to the present approximation of terms on the right side of equa-
tion (22), gives

2
Fz=-m-w Fe

wor (a)

-. —
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. This indicates, as has already been observed (reference 18), that within
the linearized theory the axisl and tangential forces cannot be pre-
scribed independently. Furthermore, from the equation of equilibrium
in the tangential direction, equation (I-2),it follows that

(lay a.——
r az&

so that within the linearized

Upon integration,
of the tangential

a (w) = rFe‘o &- (30)

the pOtit Zk being

Now that the ,mgular
forces is reduced to
edge force.

Cases (l), (2),

the angular momentum may be expressed as a function
force component

r rFe
vr=(~)k+ ~dz

zk

that at which the quantity G(~o) is determined.

momentum is lmown, the problem of prescribed blade
that of prescribed angulsr momentum and leading.

and (3), the three most usual formulations of the
inverse problem of turbomachines, are therefore equivalent under the
linearized theory.

(4) The direct problem: The blade normal ~, ~, or nz pre-

scribed as a function of r and z. The three components of the normal
to a blade represented by a continuous surface must satisfy the relation

%%)-%%)‘0
.

——- .—— —..—— —.. —
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Furthermore, since the blade normal is also parallel with the force
vector Fr~ Fe, or Fz, it follows that

Fr 4
—=—
Fz nz

and

Fe ~
—=—
F= nz

Then, according to equation (29), ~/nz may be written

% wor

nz~-

which establishes the angular momentum
variables r and z. The value of the

directly from equation (30) so that Fr

(31)
+

w in terms of the independent
tangential force Fe follows

r)= Fe $ is known. Hence for

a given distribution of blade normal the distribution of angular momentum
and the radial force maybe found and the problem is in this way reduced

.

to that of case (l).

For the linearized
becomes explicitly

r
rf(r,z) =wo 2

L

direct problem, the

nzau’+ (nza4—— ——- —
%3Wo ~& ~

Consequently,
turbomachines

both the inverse
msy be expressed

right side of equation (22)

)1
la +#gI(r)
azw (32)

and direct line=ized problems for axial
mathematically as

.

—
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$=0 onr=r
1

()
V = -Wo ’22- r12 onr=r

2

$$..=:;)
—

m

= o 1

where f(r,z) is a known function in any particular problem.

(33)

SOLUTION OF LINEARIZED PROBLEM

I

Each of the formulations of the linearized direct and inverse
problems for the axial turbomachine considered h the last section may
be transformed to the mathematical.problem given by equations (33).
In the solution of this problem, it will be convenient to express the
result as the sum of three stream functions

(34)

Here $(1) is the stream function associated with the through-flow
velocity prescribed fer upstream of the blade rows and is independent

‘2)(r,z) representsof the influence of the blades. The function ~

the disturbance caused by the blade rows calculated according to the
simple radial equilibrium theory as discussed in references I.1to 13.

(3)(r,z) represents the deviation from theThe third stream function $
stiple equilibrium theory caused by the finite radial acceleration.
The present analysis willbe
stationary or rotating blade
in the plane z = O.

s~lified by
row of chord

considering only a single
c with its midpoint located

..— __— . ___ ,
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Far upstream of the blade row the tangential vorticity qo(r) is
~(l)(r) -

prescribed so that according to equation (3) the stresm function
is defined by the relation .

=_Mr,-~)
&

(35)

Integration of this equation together with the boundary conditions

~~(u—= o at r=r
az 2

at r.r
1

gives directly

-Jp(r) = r
aw(a,-m) da

rl

Now if the function ~’(r,z) is definedby the relation

+ = $1)+$1

The problem for determining w’ maybe written

(36)

(37)

(38)

(39)
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. V’ (rl, z) = V’(rz)z)

=0 .

= 0

The homogeneous differential equation corresponding

solutions of the form Ul(enr)etGnz where Ul(enr)

bination of Bessel functions of the first order:

(40)

to equation (39) has

is a linear com-

ul~nr) = Jl(~nr)yl(~nrl) - Jl(6nr~yl(~nr) (41)

The boundary condition $’(rl,z) = O is therefore satisfied iden-

tically and the characteristic numbers en sre dete~ed so

fulfill the condition ~’(r2,z) = O and consequently satisfy

transcendental equation

as to

the

‘l(%r2) = ‘1(%r2)yl ~nr2) - ‘1 (~nr~yl (~nr2) = O

If I(p,b) is an impulse function which has the value unity in

(42)

the

interval p-~<z<~+~ (where b is very small) and vanishes

elsewhere, the contribution of the ~omogeneous term f(r,z) in an

interval ~ - ~ < z < P + ~ may be constructed from the simple solu-

tions of the homogeneous differential equations

.

.

—.. —— .
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J

r2

I

m aU1(6na)rUl(~nr) ~Gn(z-B) ~(ti)
I(8,8)f(u,z)

‘1
1 2envn2

1

CfIJ~(6nCf)‘Ul(enr)

The numbers Vn are the norms

J’‘2
~2=
n

rl

24nvn2

Z> p+; J
of the Bessel functions Ul(enr).

au~=’(Gna) d.u

22Gr
(2)r2Uo n - r12U02(enrj

(44)

where U. = ‘o(%r)yl~cnrlj - ‘l(cnrl)yo(cnr~” ‘e cmlete ‘O1utiOn
of the problem is simply the sum of solutions of the type in equa-
tions (43), taken over all values of P, that is,

where

m d~(cnu)rul(enr)e-EnlZ-Pl

G(r,z; u,P) =L
1 2cnvn2

(45)

(46)

.

—
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is the Green’s function of the problem. To investigate the nature of
this solution let f(r,z) vanish from z = _ to z = p and let

~(r,z~~ denote the jump of the function f(r,z) at its point of

disconttiuity Z = ~. Physically this corresponds to the infinitely
thin blade row or actuator disk. The solution of this problem is
formally given by equations (38) and (45). However, because of the
particularly simple form of the function f(r,z) it is convenient to
simplify equation (45) by partisl inte~ation. Inasmuch as f(r,z)
is discontinuous, the result consists of two parts, one arising from

the jump [f(r,z~~, the other from the continuous part Z>p. There-

fore if the function K(r,z; a,~) is employed to denote:

m Wl (Cna)rUl(Cnr)
K(r,z; a,~) = sgn(~ - z)

E

e-cnlz-j31

n=l 2en2vn2

the partial integration gives

(47)

2<$

The function g(r,p) is found to be, by carrying out the process
indicated,

Inasmuch as the function K(r,z; a,p) vanishes for large values of z,
it is obvious that g(r,p) is the value of ~’(r,z) induced at z = m

by the jump h f(r,z) at the point z = P. The complete solution
equivalent to equation (45) is simply the sum of solutions corresponding
to such jmps and in the limit becomes, as the jumps become small and
f(a,~) becomes continuous and differentiable,

——— ——-— _—— —
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ff

2W

f

z
af(@) K(r,z; a,~) d(Zd~+

~’(r,z) = g(r,f3)d~

.

(48)

J-m

obtained dtiectly by partial inte~ation of

g(r,~) is the increment of the stream function
by the change in augular momentum at z = ~. It iS

This result msy be
equation (45).

The function
induced at z = ~
calculated most easily by not@ that far downstream of the blade row
the stream function approaches a value which is independent of the
distance z from the center line of the blade row, and hence the term
b2q,
— vanishes. Furthermore, both because the angular momentum is con-
azz
served along circular cylinders sad the radial force Fr vanishes out-

side of the blade row, it is clear from equation (39) that the increment
of stresm function satisfies the ordinary differential equation

(4)

where vr(r,~) represents the angulsr momentum at the axisl location
z = P. Then the sum of such increments to any axial location z is

J

z

g(r,p) d~
-m

and is defined to be ~(2)(r,z) where z enters merely as a param-
eter. This solution is a generalization of the simple equilibrium
theory where the pressure gradient balances the centrifugal force in
all planes of the blade row. Clearly upon integration of equation (49)

‘2)(r,z) is a solution of the ordinary differentialthe function $
equation

, (50)
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.

=9

together with the boundary conditions

(5U

*(2)(r,-m) _. J
The remaining portion of equation (~) describes the variation of the
linearized solution from the simple equilibrium solution and is given
by

M

r2
‘af(u,P) ~(r,z; ~,p) dadp+

4(3)(r,z) =
ap

1 -m

where the last integral accounts for the contribution of any discon-
tinuities in f(r,z). Such discontinuities occur, for example, in the
direct problem where, because of the shape of the blades at the leading
edge, the angular momentum chsmges abruptly. The mathematical problem

‘3)(r,z) issatisfied by $

—.— .—— — ---- —..-
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$(3)(r1,z) = $(3)(r2,z)

= $(S)(r,-)

= +3)(r,m)

= o .

(53)

The first integal h equation (52) is usually not convenient to
evaluate because the influence function is expressed as an infinite
series which does not appear to be easily summable. However, a certain
simplification, at least in numericsl work, is afforded if it is noted
that for the usual ratios of hti-to-tip dismeter, the values of the char-

n
acteristic numbers Cn, where ~nrl % r2 are sufficiently large so

1’
~-

that the asymptotic values of the Bessel functions, valid for large
argument, may be used. The vslues are (reference 24)

(54)



5G

.

.

IWC!ATN 2614

and consequently the characteristic functions are

Ul(enr) 25
1

sin en(r - r~
Ycen

‘r
rrl

31

(55)

From this result it is clear that the characteristic nunbers, solutions
of Ul(cnr2) = 0, sre simply

smd consequently the norm is

(56)

(r2 - rl)
3

= (57)
2fi2n2r1

and the Green’s function is the trigonometric series

“’-l=ll+i(=--)

.— —— ———— ~— ..
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the series (57) maybe expressed more conveniently

G(r,z; a,fl) = (~ R2 ~ & enfi~- en””)

1

II
z-

So long as
B

r2 - rl
>0 the series may be sumed directly to give

(59)

IIF l-e”k=—loge
23( 1 - efiu

(60)

Since the modulus of the complex vsriable u never vanishes, the Green’s
function has a logarithmic infinity at IX! = O; that is, a = r and
Z=p.

EVALUATION OF PARTICULAR EXAMPLES

When the information on head distribution) an~l-ar momentum) b~de
forces, or blade shape is given for an axial turbomachine in analytical
form, there is no difficulty in finding explicit expressions for

‘2)(r,z).~(l)(r) ~d v However, the integral of equation (52) for”

(3)I! (r,z), the deviation of the solutions from the simple equilibrium
solution, is USutiy qtite laborious to ev~uate because even ~ elemen-
tary cases the result appears as au infinite series of Bessel’s functions
which must be summed to a reasonable accuracy. This method was employed
in computing the results given in reference 18. But since such a con-
siderable amount of computation is required for each example, it seems
reasonable to take advantage of the universal nature of the influence
function K(r,z; a,p) and perform the integration of equation (52) by
a numerical procedure. There is no difficulty about any numerical
integration inasmuch as the function K(r,z; a,~) has only a sti~le
discontinuity along the line z = ~. The antisymmetric nature of
K(r,z; a,p) is shownby the contour sketch of the function in figure 6.
However, any manner of numerical evaluation requires the tabulation of
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the function K(r,z; a,13),
the characteristic values

which in turn necessitates
en and the characteristic

33

calculation of
tictio~ Ul(enr).

Furthermore, the e~tire tabulation must be remeated for each value of
the hub-to-tip diameter ratio desired; in the-present case only the
value of rl/r2 = 0.6 will be treated.

The first six values of Gnrl sre tabulated in reference 24, but

their tabulation proved to be of insufficient accuracy for the present
work. Consequently, the first 10 root’sof equation (41) were deter-
minedly standard iteration methods for rl/r2 = 0.6. The results,

together with the asymptotic values (equation (56)), are given b the
following table:

.

n % Asymptotic value

1 4.758051 4.712389
2 9.448369 9.424778
3 14.182998 14.137167
4 18.861456 18.849356
5 23.571475 23.561945
6 28.282281 28.274334

32.993535 32.274334
i 37.705076 37.699113
9 42.416!300 42.411502
10 47.u8604 47.123891

It is observed that if the series to be calculated is ramidlv conver.
gent the asymptotic values of en maybe employed for ~ > iO with

sufficient accuracy. With the characteristic values known, the char-
acteristic functions Ul(enr) were computed using the tables of

Watson (reference 25) and the British Association (reference 26) at
21 points in the range of l~r/rl =1.666667. The values of these

functions appear in table I.

Finally, the sum of the first 10 terms of the series for K(r,z; m,p)
was calculated (using punched-card methods) and the results me presented
in table II. The influence function K(r,z; a,p) has symmetry properties
which allow economy of both calculation and tabulation. First the func-
tion depends on the absolute value Iz - PI and consequently needbe
tabulated only for the positive difference and not for various values
of z and f3 independently. Furthermore, the function is symmetric
with respect to r and a; that is,
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K(r,z; a,~) = K(a,z; r,~) (61) -

Hence it is not necessary to

In table II are given values

and 1.00 ~r/rl = 1.666667

1.00 Sa/rl<l.666667.

tabulate for all conibinationsof r and a.

of

on

- ~< 1.30the function for 0.033333 ~~=
rl

each page for a given value of

With this tabular material, the first integral in equation (52) may
be evaluatedby the elementary sum

as was done in the present case, or by more nearly exact methods such
as Simpson’s parabolic rule or higher-order approximations. The calcu-
lations presented in the following discussion were carried out using
punched-card methods for the double smmnation. The grid used in inte-
gration, divided into elements by ri, Zj~ ~~ ad ~z, iS shown in

figure 7.

As an example of the method just described, two problems have been
carried out using values of the blade aspect ratio of 2 and 2/3 so that
the results are illustrated for both high and l& aspect ratios.
Although not in complete ~eement with usual aeronautical usage, the
aspect ratio will be used to denote the blade length divided by the
axial projection of the blade upon the meridional plane. The following
data are assumed:

(1) Uniform flow of magnitude W. far upstream; zero tangential

velocity

(2) The radial compnent of the

(3) The distribution of angular
chord,

leading-edge blade force vanishes

momentum is, if c is the blade

.-—
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.

Vr
—= o
worl

(Q++
‘Orl

[

==+
Worl .

2

J&)

~r

~2r2

($1 )]( J
--—
c r

(63)

Vr 3a.L2—=
worl ()4 rl

and is shown schematically in figure 8

(1)(r) is easily calculated since theThe basic strem function v
flow upstream is uniform and axial. Then

(64)

Furthermore, the function f(r,z) follows directly from the distribu-
tion of angular momentum:

.———— --— -——— — .. —-—
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Then from integration of equation (50), the stresm function
~(2)(r,z)

may be written:

l>Z.-=-
2C

()]r2 2

~

r2

() ]
-1

iy

.

(66)

For the evaluation of the stream function ~
(3) by the nume~ical process

of equation (62), it is necess&y to compute the values of ~ f(r,z).az
These ace

a
f(r,z) = O

q

1>2-—=—
2C

1

Q- f(r,z) =
( )

‘1 r l<Z<O2a22$+l, _ -—=- =

a$ woa rl

a
f(r,z) =

q
t

‘a2(i-:)~-2&:y-~: o:::: ’67)

a
f(r,z) = O

q

2>1—=-
C 2

J

— —-
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. By evaluating this expression at the appropriate grid points and sub-
(3) follow directly.stituting in the sumnation (62), the value of ~

Inasmuch as the functions $(l)(r) and ~(2)(r,z) maybe given

snalfiically and their sum $(1) + V(2) corresponds to the standard
simple equilibrium solution, the principal interest is the deviation

of the linearized solution from this simple solution which is ~(3)

itself. (Consequently the distribution of ~ 3) and particularly the

~ 3$(3)
values of the axial velocity variations which are equal to - - —

r &

r2 - rl
have been calculated for blade aspect ratios Of 2.0 ~d 2/3

c

rl
and for —= 4. The change of axial velocity accordingto the simple

w.a

equilibrium theory is shown in figure 9 while the variation of the axial
velocity from that distribution given by the equilibrium theory is shown
graphically in figures 10 and 11 for the high and low aspect-ratio
values, respectively. It is assumed that the total work done by both
blade rows is the ssme and as a consequence the blade row of lower aspect
ratio is less heavily loaded.

The variation of the linearized axial velocity distribution from
that given by the radial equilibrium theory is appreciable for the blade
of large aspect ratio as was discussed in connection with the original
cdctiations of this case in reference 18. The deviation is most,
serious near the leading and trailing edges of the blade row where it
reaches approximately one-quarter of the total variation of the axial

. velocity. However, for the blade of low aspect ratio, these variations
are reduced to less than half those values for the blade of lsrge aspect
ratio, that is, to a negligible amount so far as the practical problems
are concerned.

MORE ACCURATE LJXURIZATION OF THE PROBLEM

The solution of the simple linearized turbomachine problem is quite
adequate for many problems, but that it is inadequate in providing some
particular results maybe illustrated by an example. CQnsider an axial
turbomachine with a single blade row where the blade shape is given.
By lmowing the normals to the imagimary blade surface, it is possible
to compute, in first approximation, the value of the right side of
equation (22) accord@ to equation (32). When boundary conditions

__—.. . — ..— —— -— —
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(equations (33)) are given, the problem may be solved completely. The
first term of the right-hand side of equation (32) represents the vor-
ticity generated by the interaction of the flow with the prescribed blade.
row while the second term #gl(r) represents the tangential vorticity

distribution transported from upstream of the blade row. If the distri-
bution of the axial velocity far upstream were changed although its mean
value W. remained constant, one would expect the solution to be
changed physically for two reasons. First, the flow will be changed
directlyby this variation of initial condition because the vorticity
transported into the field is changed. Second, the flow will be changed
because the interaction between the modified approaching flow and the
fixed blade surface will differ from the interaction between the original
flow and the blade row. However, it is noted that the expression repre-
senting the tangential vorticity generated by the blade action, the
first terms on the right side of equation (32), is unchanged bymodi-
fication of the initial sxial velocity distribution. This effect is
clearly a result of the form chosen for the approximating stream func-
tion when the linearization for the direct problem was csrried out; the

stream function -Lwo # does not account for any dependence on
2

upstream or local flow conditions. A similar inaccuracy is also present
in the linearized solution for the various formulations of the inverse
problem.

In order to treat these problems adequately, a sharper lineariza-
tion of the fundamental differential equation (equation (Xl),)must be
constmcted. Particularly, it is necessary to approximate the terms

(.-d)y+3
Vs

more accurately. Again, it will be assumed that

the stream surfaces are practically circular cylinders so that
F~ ~ Fr. However, @tead of assuming the approximateing stresm func-

tion to be that of the mean flow, it will be chosen to be the stream
function corresponding to the true sxial velocity. Then the variation
of the stream function is approximately

a4fz-WCdr (a)

and the velocity Vs is approximately w. The vorticity-generation

term may be written as

(69)
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where w is the local
problem the components

kIIOWIl,snd, SiI.lCethiS

39

axial velocity and is unlmown. But in the direct
of the normal to the blade ~, ne~ and nz sre

vector is also normal to the relative fluid
velocity, it follows as before that

unr+ (v- m)q+wnz=o (70)

In axial turbomachines it is usual that nr is a S- qusntity in

comparison with ~ and nz, and the radial velocity u is inevitably

small in comparison with the axial velocity w. Then to a very good
approximateion

-v-m nz—= -—
w %

(71)

which is precisely the first factor in the expression of equation (69).
Similarly it is convenient to write

From the

and Fz

%=+%9%+:
nz w U)#= .—‘r ~ W.

+T (72)

condition that the vectors ~, ~, @ nz ad Fr, Fe,

are parallel, it follows that

and because of the small magnitude of
as before

Fe - (73)

Fr it seems justifiable to write,

rFr 4

()

anzw
()

4anz—~-wo —r— —— ~-wor———
w % az ‘e ‘o ~az~ (74)

———. - — —
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The more nesrly exact approximation to the expression given by equa-
tion (69) is therefore

(75)

The first term in brackets of this expression is identical to the one

used in the former approximation while the second term ~$~~(:-]

is the correction for the variation of axial velocity from uniform while
passing through the blade row.

(l)(r, z)+~’(r)z))By writing the stream function as ~(r,z) =$

where V(1,(r) is the stream function assigned far upstream of the
blade row, it is noted that

1 M’(r,z)w(r,z) - w(r,-m) = - ;
ar

(76)

Then the more
the blade row

1-

nearly exact version of equation (20) which holds within
maybe written b the form

—



.

NACA TN 2614

where

Outside the blade row, v’ satisfies the equation

&.–_I WI + a%’
ar2 r &

= ~’(r)
az2

41

(78)

(79)

where ahead of the blade rowy ~’(r) = 0, @ downstream of the blade
row, the tangential vorticity retains a constant value along circular
cylinders equal to that at which it left the blade row. That is, for
z 2 c/2j

q’(r) = h(r,c/2) -?~#.$~lz=c,2 (80)

where z = c/2 is the z-coordinate at which the blade row terminates.
Both inside and outside the blade row the boundary conditions we

(81)

.—. ._—_— -—. .— --- ——. .— -—
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Because of the function ~ (r,z) in the first term of the left side

of equation (77), which depends upon the psrrticulerblade shape assigned
for each problem, the equation is mathematically dtificult to solve
except under quite restrictive assumptions on the blade shape. Further-
more, even if quite general solutions to this equation could be obtained,
there still remains the problem of matching that solution with those.
holding outside the blade row; each solution would have a different set
of characteristic functions for the radial direction. Hence it is
appropriate to seek an approximate solution.

It is possible to split the function ~’(r,z) into two parts as
before, the first being the simple radial equilibrium solution and the
second representing the deviation from this solution caused by the
finite radial acceleration. The equation satisfied by the simple radial
equilibrium solution is obtained from equation (77) by deleting the

term $ and treattig z as a perameter. Then, if ~‘2)(r,z) is

this solution, it follows by rearrangement of the terms that

with the boundary conditions

(82)

*(2+,2) = 42) r2,z

= if(2)r,-+

(2)(r,z) vanishesThe above solution holds within the blade row; W
upstream of the blade row and downstream of the blade row retains the
value it had at the trailing edge of the blade row. ~The function

$(2)(r,z) therefore yields a solution at z = CO,but,in contrast with
the situation in the previous treatment, this is not the correct value
of the stream function there because the correct flow, end hence tan-
gential vorticity, at the blade trailing edge is not known. Therefore



a function V(3) which would complete the solution of equation (77)
will not, in general, vanish at z = m. Consequently the solution

(83)

is only an approximation, although a quite
ratio is not too large. Approximations of
obtained by employing an iteration process
of problems

reasonable one if the aspect
better accuracy may be
consisting of the sequence

--)

.
.
.
.

●

.

.

-L
(2)

1 d~n
.-—
. dr [(lnZ b ‘Z a 1$.1(2).h(r,z)-–———— -

]
+ *n-J3)

r~br~br

(84)

.

—.— .—- .— —— -—
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The accuracy of the solution * = V(l) + $n(p) + $n(s) will probably

be increased by continued iteration. The work involved in carrying
out such an iteration is considerable when done analytically but
should not be excessive when a punched-card machine is used. Huwever,
the problem meriting more computation than is involved in the solution

Y% V(l)+ V$2) + WJ3) is a most exceptional one. Usually the

simpler analysis described in the next section will be adequate.

SIMPI.J3?IEDAPPROXIMATION TO iXNEARIZED SOLUTION

The process described for the solution of the linearized problem
in turbomachine theory consists of superposing the mean axial velocity,
the additional velocities due to the presence of the blade rows which
would exist if the radial acceleration were neglected, and finslly the
correction of this simple equilibrium solution for the effect of radial
acceleration. The first two parts are etiremely easy to solve, the
second requiring only a simple quadrature. The difficulties, when
they are appreciable, arise in connection with the third part and in
particular with the evaluation of an inte~al

(85)

where the function K(r,z; a,p) iS given by eq~tion (47). ~ show
in figure 6, the function K(r,z; CL,P) has a discontinuity along the
linez= p which is of considerable physical interest.

Suppose, for the moment, that the blade row in question is the
only one ti the field and is replaced by a discontinuity or “actuator
disk” which provides the same change in angular momentmn as did the
entire blade row it replaced. Then equation (85) is reduced to the
single titegal
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1-

(86)

The complete solution for the stream function is continuous at the

‘2)(rjz), however, is discontinuous acrossactuator. The solution *

the actuator disk and consequently the discontinuity in ~‘3)(r,z) is
of proper magnitude and sign to make the sum continuous. Therefore

$(3)(r,z1+) - $3)(r, z~-) =
[

- 42)(r,@) 1-*(2)(r,-ml
(87)

Furthermme the function K(r,z; a,~) is sntisymmetric h z - P so
that it also follows that

$(2)(r,m)- *(2)(r,-m)@ (r,z~+) = -+3)(r,zl-) =
2

(88)

that is, the discontinuity in ~(3)(r,z) is equal to the change in
stream function between stations far downstream and upstresm, respec-
tively, and is antisymmetric. Now, bywritin.g the function K(r,z; a,~)
in detail,

D
r~

~l(~na)rul(enr) -~nl”z-pl~
~(3)(rjz) = SgIl(~- z) f(a,ZJ e

rl - 2en27n2

-

. —— -.— .— - —
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it follows from the reasoning above that

$3) (r,21+) = (3)-V (r,q-)

x! 2 CAJ1(en+ rul(‘nr) ~
= Sg(p - z) f(a,z)

rl 2En27n2

inasmuch as all

~2) (r,~) and

l/f(2)(r,m)- *(2)(r,4)
=

2
(89)

exponential functions become unity. The stream functions

$(2)(r,-m) are known from the previous calculations and
consequently equation (89) expresses the sum of the infinite series of
integrals in a very simple form which it is convenient to use in the
fol.lowingapproximateion. In the actual solution, the variow Bessel
components of this series vary as different exponential functions of

-Gnlzl
z and e , where ~n increases approximately in proportion to n

and the series is rapidly convergent for 2+0. For the approximation,
it will be assumed that a sufficiently accurate result maybe achieved
by determining a parameter At such that sll Bessel components vary

-1.’Izl
with the factor e ; that is,

r2

x!

f(a,$)

rl

C1.Ul(~na)r“l(enr)
26n27n2

(90)

If sn appropriate value of X’ may be found, then, from equations (89)
and (90),
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It remains only to provide a consistent manner of finding the appro-
priate value of the exponent k~. It will be convenient to write the
exponent X’12 - PI in the form

x~lz-f!l=k c
r2 - rl

,~,.;lyl (92)

where c is the projected blade chord ad the synibol R is used to
denote the projetted aspect ratio of the blade. NOW if the t~enti~
vorticity computed from this approximatee stream function were constant
along concentric cylinders, it would be a true solution to the linearized
problem. This property suggests that a possible method for determining
L is to choose such a value of X that the mean square variation of
the tangential vorticity is a minimum along a streamline. If the vor-
ticity computed from the stream function of equation (91) is denoted

T(r,z), the integral of the square deviation of la–;~ q maybe written

(93)

where, because of the antisymmetry, the integral.need be extended only
over the volume downstream of the discontinuity. Because the exponenti~
approximateion is inherently poor in the neighborhood of the discontinuity
and improves at great distantes from the actuator disk, the errors have
been weighted so as to take more account of those far away from the blade
row ad leSS =cO~t of those very near the.actuator disk. llmnstream
of the discontinuity the variable part of the approxhate stresm func-
tion is

T(3) = rk(r)e
-(X/R)lZ-~/CI

.— -——— .— —-——.
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where
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T(2)(r,~)
- *(2)(r,=)

k(r) =

Now by calculating the tangential
and equating its A variation to

P2

2r

vorticity, evsluating
zero it foUaws that

mcl

(94) .

the integral (93),

(95)

When, for exsmple, the ~gul.ar moment~ c-e across the actuator disk
is prescribed to be of the form rv .-wr2, the values of X may easily
be written down explicitly

(96)

The resulttug values of X are shown h figure 12 for various ratios
of hub dismeter totip diameter.1 It is to be noted in particular that
for this distribution of angular momentum, the values of X sre very
nearly equal to m. Thus the first characteristic number c1 is of

dominating importance in determining the rate of formation of the
velocity profile. The terms having large values of en decay very

rapidly and soon disappesr in the numerical result.

.

he value of A for r21rl = 5/3 was given incorrectly in refer- .

ence 18. This error was pointed out by Dr. R. H. Sabersky.

.

— —
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When wing the exponential approximateion, it is often convenient
to use the axial velocities directly inasmuch as they are the data of
principal interest. Hencej according to equation (91),

(w(2)(r,c0)-w(2) (r,--) e-(x/R)l(z-P/c)l (97)
W(s)(r,z) =Sgn(p - z)

2 )

where W(2)(r)-m) and w(2,(r,~) me the axial velocity distributions
given far upstream and downstream, respectively, by the simple radial
equilibrium theory.

The example worked out in detail maybe solved approximatel.yby
the method just described. From the results of equation (66) it
follows by differentiation that

w(2)(r,-) =O

2$[+W2HIjW(2)(r,m) = woa

(98)

Then if the blade is replaced by a discontinuity at B = O the resulting
exponential approximation

w(3)(r,z) =s~(~-

2W.a
(99)

The velocity w(3)(r,z) represents, in this case, the deviation of the
true axia3 velocity from the equilibrium solution corresponding to the
tangential velocity discontinuity at z = O.

The simplicity of the exponential approximation allows a solution
for the sxial velocity distribution in a multistage turbomachine. Con-
sider the flow in a turbomac~e containing N blade rows (fig. 13)
the first of which has its center of loading at z = PI, the second

—.—————— -— ..——
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at z = 82, and the kth at Z = pk. Also let the angular momentum

upstream of the first blade row be rvl, that between the.first and

second be rv2, and that between the lrthand the (k + l)th be ~k+l.

Assuming the axial velocity far upstream to be uniform and of magni-

‘1)(r) and the fUnctiOnS $ktude Wo, the stream function ~ (p)(r)

may be obtained from equations (35) and (50), respectively. Or, con-
sidering the axial velocity distribution directly, the simple-
equilibrim axial velocity distribution satisfies the first-order
differential equation

‘%(%:0-‘k)=ROW)=(5”-P-v’%(%)“00)

where W. a WI. Thus the simple radial equilibrium solution for the

region between the (k . l)th and the lrthblade rows is

k-1

wk(r) = ‘1 +
1( )‘n+l - ‘n

1

(101)

that is, the sum of the increments of axial.velocity caused by each of
the blade rows occurring before the section under consideration. The
axial velocity distribution of equation (101) is very nearly that which
would hold if the blade rows were very widely spaced. When the blades
are spaced more closely, as they sre in any practical instance, none
of these changes indicated in equation (101) is quite complete and
similarly the changes which are about to occur farther downstream begin
to make themselves felt. These influences are accounted for by the

(third component of the stream function ~ 3)(r,z) or its equivalent
in terms of the axial velocity variation. The increment associated
with the kth blade row follows from equation (97) and becomes

)( )‘k+~(2) - Wk(2)
wk(3)(rjz) ‘so(~k- z

e-(%lRk)!(z-%rjlck! (~@
2 / .
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where kk, Rk, and ck are the values of these parameters appropriate

to the kth blade row. Therefore, the velocity at z differs from wk
by an amount equal to the sum of the variations caused by each of the
blade rows.

This result simplifies when aU blade
and spacing, and when a mean value of
blade spacing ad the first blade row
origin, then @k =(k-l)dd

(103)

rows have the same chord, length,
X is employed. If d is the
is assumed to be located at the

For example, consider an axial turbomacMne having uniform axial velocity
W. and zero tangential velocity fsr upstream and consisttig of blade

rows imparting the following changes of singularmomentum:

(1) Stationary entrance guide vanes which impart a tangential
v’ - VI

velocity corresponding to “solid body” rotation: — = al A

Wo ‘2

(2) Rotating blade row with angular velocity m which adds uniform
ener~ over the cross section and hence imparts a tangential velocity

chsmge corresponding to a potential vortex: -=+%
W. r

(3) nter.ate stationary blade rows and rotating blade rows of
angulsr velocity u which @part, respectively, changes of tangential

velocity equal to -2* ~ and ‘q;

—_—. —.— ,.
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The corresponding
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changes of axial velocity follow from equation (100)

WI = W.

‘3 - W2

[

1
W.

= a1a2

()

rl 2
1-

~

‘n+l - ‘n
= 2(-l)na1a2

‘o

1
2

(}

r2
lo& — --1 - lo~

_()

rl 2 ‘1
1-

-

(105)

The axi= velocity distribution is then easily computed from equa-
tion (104). It is particularly interesting to observe the nat~e of
the flow through the first few stages of the turbomachine. This is
done most easily by studying the shape of the stream surface which lies
at the middle of the smu.lus far upstream of the ftist blade row. To
determine this shape the radial velocity distribution is required,
which, according to the centinuity equation (2) and equations (104)
and (io5), is

u L—=.
W. 2

where the functions %(r)

IA z-(n-l)d

F%( )
-1? cre I

t--

are, ti general,

(106)

J‘k Wn+l(a - w (2)
~(r) =;

won (?~r,)d(:)
(107)

1

——— ——



NACATN 2614

and in the present example have the specific values

al2 rl rl

ml2
kl(r) =— —1-=

4r2-rlr Tl

al%?
2

r2_1

() 1.
r2

loge

53

(108)

2=06 R=20MFor the values . > . > —= 4.o, al = 0.8, and ~ = 0.1,
r2 c

this stream surface is shown in figure 14 for the portion of the flow
nesr the first few blade rows. From this result it is seen that the
periodic flow is established very quickly, essentiallyby the time the
fourth blade row is reached. The transient state resulting from the
inlet vanes and the first rotor is of very short duration, partly
because the distortion caused by the rotor is of the ssme sense as that
caused b’ythe inlet vanes snd assists in completing rapidly the dis-
tortion due to the guide vanes. This is an example of “negative
interference”between adjacent blade rows. Farther downstream, however,
where the periodic flow is being established the interference of adja-
cent blade rows is positive, with the result that the distortion which
would be caused by one of the blade rows existing alone is never
reslized. Actually without this interference the distortion caused by
each of the blade rows fsr downstream would be nearly as ~eat as that
due to the inlet vanes.

A quantitative estimate of this interference maybe achievedby
considering the flow through a stage far from the inlet so that it is
effectively both preceded and followed by an ~inite number of identical
stages. A problem similsr to, but more general than, this has been
treated in great detail bywu and Wolfenstein (reference 27). BY trans-
lating the origin of coordinates to the plane of the kth blade row
accordimg to z =(k-l)d+ z’, equation (104) becomes

. —.—-——
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A,ZI k-1
w- wk 1

-—
~ Rc

x
%-1(2) - WJ2)

,-#(k-n)~
—= -—

Wo 2
+

n.1 Wo

If.the stage is so deeply
blade rows is suppressed,

Furthermom

periodic of

where ~~wo

fluctuates.

hbedded that the effect of
then, according to equation

the first two
(105),

(l@)

‘n+l - ‘n = (-l)n &
Wo ‘o

from equation (101) the velocity distribution wk is

period 2k snd may be expressed in the form

wk ~ k-l lAw—=—
W. W.

+ (-1) ~~
o

is the mean velocity distribtiion about which the flow

Then if in equation (109) the index of the first summation
is transformed to .l= k ~ 1 - n “and that of the second summation to
j =n - k, equation-(log)

r

may be written

(110)
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Nowfor the deeply inibeddedstage k - 2 + OJ and IV- k -+w; the

occmrence of (-l)k-l preceding the whole expression implies merely
a difference of sign for even or odd blade rows, that is, for rotors
or stators. Then each of the summations is a geometric series which
gives the result

w- k-1 l~w
—F= (-1) ~’
W. o

() ld
A
z’ i--

2
cosh —

Rc

cosh & ~

(lXL)

which is valid in the range -dsz’ SO, that is, between the (k - l)th
and Rh blade rows. FYom this result it is clear that the distortion
from the mean distribution R vanishes at the plane of each blade row
and reaches a maximum midway between the two blade rows; that is,
~t = -$d. If the blade rows were separated by a great distance, the

variation of the axial velocity profile

at this point. However, because of the
tortion is reduced by a factor

1.

from the mean would

mutual interference

-

be LAQx
2 W.

this dis-

(112)

For the value of X = YC,the distortion factor is shown in fitie 15 in
r2 - rl

terms of the blade-spacing ratio S = —. When the turbomachine
d

blades have a very low blade-spacing ratio, that is, of the order unity,
practically the full change of velocity profile takes place and for
S = 2.0 the variation is still significant. On the other hand for
blade-spacing ratios of 3.0 or over, the distortion factor has decreased
to such a low value that the periodic changes of the axisl velocity
profile me negligible.

One great advantage of the exponential approximation is the ease
with which it may be employed in the treatment of the direct problem.
~ the direct problem, the flow is to be calculated where the blade
shape is given, ushg as a boundary condition the fact that the flow
relative to the blade must be tangential to the blade surface. This

—— . — ..—— _——..—
.
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condition
mation is

NACATM2614

is difficult to satisfy, even when the exponential approxi-
emplo~d, and requires the solution of an integral.equation

or a related iteration procedure. However, in view of the determining
nature of the condition at the blade trailing edge, an adequate approxi-
mation will be obtained by relaxing the condition that the flow be
tangential to the given surface at all points, but satisfying the con-
dition of tangency only at the trailing edge of the blade row. Con-
sequently it is necesssry to prescribe only the flow conditions upstresm
of a blade row, its trailing-edge-angle distribution, and its angular
velocity.

If # is the angle made by the trailing edge with a plane normal
to the axis, then, according to the approximation of equation (71),

VT-U
tang= (113)Wnl

J.

where the subscript T denotes conditions at the trailing edge of the
blade row. If the small difference between the tangential velocity
at the trailm edge and that far downstream is neglected, then
vT x v2. Furthermore, if the diStaUce from the center of blade loading

to the trailing edge is Z, the relation between the axial velocity at
the trailing edge and that far duwnstresm maybe calculated from the
exponential appro~tion

()
WT W2 W2 -Al

-wlle~—-— =-— .
Wo Wo ‘o 2

or

() -Al
WT W1 W2 - WI

+— 1 -LJE-—=—
W. W. ‘o 2

( 114)

—-.



NACATN 2614

According to the information
linearized solution, the equation
as

57

obtained in studying the more accurate
governing the process shall be taken

()dw2-wl ‘l-w d ‘1 ‘2-m=— —. -—
z W. WI rdrwo W2

where the influence of axial velocity variation is
denominator, instead of the corresponding equation

d ‘2—— (1-15)
rdrwo

explicit in the
(100) (k= 1)—

which suffices for the inverse problem. ‘The probl~ then,”using the
relations (113) and (114), is to reduce equation (115) to one which
expresses the downstream axial velocity W2 in terms of the blade

speed, blade discharge angle, and the known inlet condition. The

term
Vp-m

can be written with good approximation
W2

V2-UR’VT-CLE’WT
. —

W2 wT w2

WT
= tan fl

dW1+(W2-W

Then, using equation (1.I.4),

VP -(W

( )

-M.
:.”1 #y

.tEul(d l-&-
W2

(u6)

.—..—— -- —
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Similarly the term

may be approximated by writing

‘ .td~+w,;q+?q

NACATN 261.4

(117)

()~,-~d~,
Consequently the term —— of equation (115) becomes

w, rdrwo

“1
—+
W.

— .
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W2- W1which can be simplified by neglecti~ second-order te~ in —
Wo

and its derivatives

( )(‘1 car
-M
— W2 - W1

Ztan$&rt~@C+g l-~~c ~

)

-Al

Inasmuch as both ~ em ad ~
Wo me USlldly _ comp~ed ~th

unity, the second parenthesis of the last term is, with sufficient
accuracy,

Alw2-wl
1 &c12-— —s3 1

Wo

The principal.
approximation

relation, equation (115), may thus be written in good

(t~@d W1 ) vl-~d
——r— tm $+% -—

r)

10
r dr

—— =
‘o Wo W1 rdrwo (u8)

— —. —
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This linear first-order differential equation can be solved quite gen-
erally when blade discharge angles, blade angular velocities, and
upstream conditions are given. The single boundary condition required
is the conttiuity relation which may he written as

For example, if the flow

component, and the blade

where 7 is a constant,

r2 Wz-q
rdr=O (llg)

rl ‘o

far upstream is uniform and has no tangential

dischsrge angles

the differential
be rewritten in the dimensionless form

we given by tan fl= y ~,r2

equation (equation (118)) may

This equation integrates directly to give

where
dition

C is a constant
(equation (1.19))

of inte~ation. By applying the centinuity con-
it f 01.luwsthat

———
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so that the constant of integration is

The logarithmic

-log

\
l+pl -

term in this expression

.

Y(..-)p)p(2)Y
1-

.+,2(,;3)
.

61

may be written approximately

-Al )ex-
1+

.———.-— —— -
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when

is small compared with unity. Then the constant
quite accurately by the very simple expression

c 1-%

which is remarkable for the fact
inner to outer blade radii. The
consequently

that it depends

of integration is given

(121)

only upon the ratio of
downstream velocity distribution is

(122)

and is shown in figure 16 for a range of values of ~ $ It is to be

noted that for low values of * the distortion of skial velocity
R

is notably reduced over that for large values of MO Thev~ueof
R

Z/c
T may be changed through modification of either the blade aspect

ratio R or the blade spacing Z/c >1. With this result, it is pos-
sible to compute the performance of the turbomachine, for, according
to equation (~k), the axial velocity at the trailing edge is
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Consequently, for the prescribed trailing-edge

r

63

angles and equation (113),

The distribution of totsl head coefficient may then be written

where the quantity wo/um2 is usually known as the flow coefficient.

Clearly the value and sign of /W. ar2 governs whether the local opera-

tion (for a given value of r/r2) corresponds to a turbine or a com-

pressor; that is, whether the head coefficient is negative or positive.
Of particular interest to the present investigation is the variation in
the distribution of head coefficient caused by the three-dimensional
flow process. This effect is found by comparing the head-coefficient
distribution found in this way with that obtained under the equilibrium
theory; that is, when 2 -CO, This difference can be written as

1

1 I
(l+q-’+ ($rj

. . ...
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The radial distribution of this variation is shown in figue 17 for an
appropriate range of values of A1/Rc. The difference decreases, of
course, as 2/13c ~ . because then the simple equilibrium SOlutiOn is
approached. Also of interest is the fact that as Z/Rc aco the
radial variation of the enthalpy distribution decreases. These results
sre peculiar to the distribution of trailing-edge angle which was chosen
for the problem.

The exponential approximation may also be employed to discuss the
operation of turbomachines at flow coefficients other than those for
which it was designed; this is usually referred to as “off-design”
operation. For this problem it is assumed that the detailed flow is
known for the design operation smd the variation of the flow from this
@own distribution is calculated for small changes of the flow
coefficient. >

Let b(r) indicate the difference between a solution of equa-
tion (118) for the off-design operation and one for the design condi-
tion; that is,

Wn - w-l W.* - W=*
““-l.~(r) = ‘= - ““=W*””L

Wo o
(125)

where the starred quantities
ditions. Then, according to

are those corresponding to the design con-
equation (118),

[) 1

tan#dr~-~t=@+g- &
r dr + p(r)W. WO* W() WO*

where

(126)

.-——. — —
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This equation may be integrated in any particular case when the com-
plete upstream conditions and flow coefficients are given for both the
design and off-design conditions. The boundary condition is simply

(127)

[

r2

b(r)rdr = O

rl

When the term on the right side of equation (I-26)vanishes, the solution
becomes ~(r) = O which is logical inasmuch as the terms on the right
side represent deviations from the design condition. Furthermore the

term p(r)-=4k-3t=’=1‘epresent
of the variation and nonuniformity of the initial flow far upstream of
the blade row. When the upstream velocity distribution is unchanged
and the tangential velocity vanishes, this term itself vanishes. On
the other hand the remaining

Z4JLK
r

(
dr Wo

which represents the effect

term is

(128)

of the variation of locsl flow coefficient.
This term exhibits clesrly the possibility of shilar operating condi-
tions; any change in mean axial velocity (flow quantity) snd blade
angular velocity which leaves their ratio unchanged produces no varia-
tion in the distribution of sxial velocity. As before, the trailing-
edge angle is known; the tangential velocity (and therefore the total-
head coefficient) leaving the blade row under the new operating condi-
tions msybe found directly once the new distribution of sxial velocity
is lmown.

To illustrate this analysis it is convenient to employ the same
example used in the direct problem. Consider a single moving blade row

with trailing-edge angles such that tan fi=y: with design axisl

and blade angular velocities WO* and o*, respectively. Let the

tangential velocity vanish fsr upstream of the blade row and the axial

.—— ——. —- ___ .— —_.——.————————
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velocity be uniform
tion (126) becomes

d

[[(

1+ 1
~~
r2

NACATN 2614

at the ssme point. Then p(r) s O and equa-

Inte~at ing as before, the solution for b(r) is simply

(130)

.

Clesrly the distortion of the axial velocity profile caused by off-design
operation decreases as X2/Rc increases, for example, as the aspect ratio
increases and other geometry remains fixed. The change of axial velocity
distribution for a unit change of ur2/wo is shown for the above example “

in figure 18 using v~ues of y
2k-@?

= O.~, 1.0, and 2.0. It iS .

seen that, for the blade shape used, the flow distortion may be consider-
ably less when, for example, the blade aspect ratio is low than when it
is high, the value of Z/c remaining fixed.

IJKEARIZED PROBLEM FOR CONICAL TURBOMAC!HINE

The flow through an axial tuxbomachine is not the only
situation which may be treated through linearization of the

physical
right side

of equation (20). ‘This may be done,‘in principle, for any sxiilly
symmetric problem where the general behavior of the stream surface may
be given in advance. When, for example, the walls of the t.urbomachine
consist of two cosxial cones with a common vertex (fig. 19), equa-
tion (20) describes the situation adequately and the problem may be



.

,
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linearized by assuming, on
stream surface consists of

the right side of
conical surfaces.

67

equation (20), that the

To discuss the flow in detail, it is convenient to transfom equa-
tion (20) into spherical polar coordinates R, 13,and O (see fig. 19)
with correspondingvelocity components U, v, and W and vorticity
components ~ q, and Z. The components f3, v, and q =e given
the same symbols as for the cylindrical problem since they are, in
fact, the same quantities. The coordinate transformation is simply

vr=RsiIl@=Rl

}

(131)

Z=RCOSO=RV

where w E cos @. Then equation (17) becomes

(132)

Here the stresm function has the properties U =
1 w and

R Sti @ Ra@

w=
-1 W

The right side of this equation is linearized by con-
Rsin@~

sidering UO(R), the basic flow corresponding to a source or sink at

the origin R = O, to be only slightly perturbed by the action of the
blade row. Then on the right side of equation (132), choose

M= UO(R)R sin 0 d~ = -UO(R)R dp

—— _——
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and consequently the linearized expression becomes

(133)

If the radial.velocity Uo(R) has a value of U.(R) at a reference

radius ~, it follows that, at any other radius,

UO(R) = Uo(~) (%)2

or

+0 .

The boundary conditions to be
those of vanishing tangential

(134)Uo (%)%)2(IJ1 - J

satisfied by the stream function v are
derivative at the inner and outer cone

=@= y Sw, PI- and V2, vanishing disturbances in the p-direction

both for upstream and downstream, and certain conditions at the blade
depending upon whether the blade shape, blade loading, or angular
momentum distribution is prescribed. These conditions may be given
analytically as they were for the axial turbomachine: At the inner
and outer boundaries,

1 (135)

.——



#

NACATN 2614

As R + O and R + . the flow becomes conical, therefore

=@/%)‘:flw(%/%)=0

The values of ~ and V. me assumed to be known at some station

upstream of the blade row, and the angulsr velocity of the blade is
given. Concerning the conditions prescribed at the blade row, only

(136)

~he case where th= angular moment= is prescribed
extension to the other cases may be effected in a
that used for the axial turbomachine.

The mathematical problem to be considered is
differential equation

$V+l-IFW=
s # aN2 f(R’v) +

where

69

will be treated. The
manner analogous to

therefore the partial

r—

. . . .—— —— --———- — -—
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The functions v(R,v), ~(~), and VO(V) me given. It is con-
venient to choose the stream function ~ to be the sum of two partial
stresm functions

#-\
where ~~~~ correspond to the flow which would exist for the same
initial snd boundary conditions, but with the blade removed. The func-

tion *(2) is then the perturbation ,stresmfunction corresponding to
the effect of the blade row on the U

~(l)
Clearly —=

?)R
o so that *(1)

for, according to relations (137),

which with the conditions

$(1)(R,P~

and W velocity components.

is found by a simple quadrature,

(139)

$-(1)(R,@ = Uo(%) %2 (~1 - ~2)

determines *(1)(R,w) completely. Then the stream function V(2) satis-
fies the homogeneous problem

(140)

——-—
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Solutions of the corresponding homogeneous equation may be written in
ni+l

the forms R Hni(p) ad R-niHni(~) where Hni(p) are linear

cnmbtiations of associated Legen&e functions (reference 28) of order 1,
degree ni, and both first and second kinds.

(l)(w)~i(l.)(~j -pni
Hni(~) = p% (l)(@nJ%) (141)

This clearly vanishes identically when p = PI. The ctiacteristic

functions of the problem are thus determined by findhg those values of
the degree ni such that

P ql@J1)(112)P ‘1)@2)~(1)(W1) - niH%( w2) ~ ni

.
= o (142)

The resulting infinite set of values ni are the characteristic nunibers

which range between -CO and ~. However, it is possible to restrict
the necessary values of ni through noting (reference 29) that

P (1)(~) = Pni(l)(v)
-ni-l

—
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Sinni+lfi
‘nil(l) = f )

(
sin n~ - l)YC%

‘l)(P) + * ‘ni(’)(p)

-ni.l( l.1)is simplyand therefore the value of H

sin (ni + l)fi
H-ni-I(V) =

(
Hni(~)

SiIl ni - 1)m

Consequently it is not necessary to consider values’of ni for which
ni< -1. The corresponding set of characteristic functions Hni(P)

is complete and possesses orthogonality properties common to functions
satisfying a Sturm-Liouville problem.

A solution to the inhomogeneous partial differential equation

(equation lb) from solutions R‘i+lHni(~) and R-n%ni(w) of the

homogeneous equation follows: If I(a,6) is hpulse function with
properties

the contribution to the solution of the function f(R,~) in the range

a -~<R<a+~ maybefoundtobe
2

— . ..—.
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where the choice of the solutions is determined

tions at R = O and R = CO. The numbers 2
~ni

Hni(p) fUnctions

J
PI

2=
2(B) dP‘ni ‘ni

1-q

73

by the boundary condi-

~e norms of the

(14-4)

The complete solution to the problem is simply the sum of the solutions
of the type (143) for each element of the range where f(R,~) # O. Con-
sequently if the function L(R,j.L;a,~) is defined

“ Hni(B)&i(~)
L(R,w; a,~) =

I vni2(2ni + 1)
1

F1-
2 ni+l
pR

R<a
1- ~2 ani

1

1
(145)

m H%(p)H@ ~- ~2 R-ni

L(R,v; u,P) =

z r

— — R>a

‘ni2(~i + 1) 1- ~2 ~-ni-l
1

The complete solution is

[J

$2)(R,P1 = m ‘2
f(a,p)L(R,y; a,p) dad~

o VI

(146)

so long as the function f(a,~) is integrable.

Although this procedure is formally quite simple for any distri-
bution of angular momentum (or for any other manner of prescribing
information at the blade row) the details of the calculations involving
the Legendre functions =e somewhat cumbersome. The difficulties lie
principally in the lack of extensive tabulations. Therefore it is
appropriate, and usually sufficiently accurate, to use an asymptotic
expression for the functions %&). This representation is

——— —————.
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(147)

where @l is the semivertex angle of the root cone. Consequently the
vslues of ni are determined so that H

()ni K2 vanishes, or if 02

is the semi.vertexangle of the tip cone

or clearly

illni = 1-— (148)
@2-01 2

Therefore, except for impractical included angles @2 - UIl,’Onlyposi-

tive values of ni will enter into the problem. The norms of the
functions are easily calculated

-n12
= (l@)
(2ni+ 1) sin41

Then, in the asymptotic representation, the Green’s function becomes
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wher~ 5 is the variable of integration corresponding to 0; that is,
Cosas. By means of these results, the perturbation stream function

V(2)(R,w~ may be evaluated directly from equation (lk6). The integ-
rations offer no essential difficulty.

EXAMPLE FOR CONICAL TURBOMACHINE

As an example of the analysis of the conical turbomachine problem,
consider the flow through such a configuration having a root semivertex
angle of 01 = Ye/6 and a tip semivertex angle of 02 = Yr/4. Assume a

single blade row containing an infinite number of blades of chord c
and angular velocity a, and located with its center at R = ~. The

blade aspect ratio %(O2 - @l)/c is equal to 2.0. Let Uo(~) be

the mean through-flow velocity on the spherical surface R = ~ and
assume that the flow is uniform and undisturbed at R +~.

~estremfmction @ corresponding to the mean flow is simply

p)(o) =
Uo(%)+ % - Cos ‘$) (151)

(2)(R,y) satisfies equation (lko) and to solveThe stresm function v
this it is necessary to prescribe conditions at the blade row so that
the function f(R,p) maybe evaluated. For the present example the
distribution of the angular momentum will be prescribed and for con-
venience will be given as a distribution similar to that used for the
examples of

VR sin @

VR SiR O

VR sin @

the axial turbomachine calculation. The angular momentum is

(m)
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It will be asswmed further that the blade
so that F~ = O. The angul~ momentum is

NACATN 261.4

leading edge is propntioned
prescribed so that it is con-.

tinuous and its derivative & (vR Sill@)~ Proportional to the tangential

force exerted by the blade row, is continuous and vanishes at the trailing

edge R=~-~. With these values of the angular momentum and the

definition of f(R,~), it is easily shown that

f(R,~) = -Uog(R)v(1 - V2)

where the function g(R) iS

g(R)=0

( )[( )
1

k~!$+$-zl .@

g(R)= ‘+~-~k
c U.

c 2C UO(R)
T

Therefore, inserting the result of equations (153) and (150) into the
general solution, equation (146), it fo~ows that

‘IN
w

()R ‘3+1 -n

k)

a j—
K

g(a)

()

-n3
(d
& ‘S+l

.: 0

da x

-,”

(155)
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where the appropriate Pir6 of exponents for ~ and
%

~ are employed.
%

For practical calculation, it is important to note that the integral
.

f

w

g(a)

o [1
-n

()

J

:

(J

n +1(&J
R

da

must be evaluated as

p

g(a)

)

()
-n.-
J

:

a ‘j+l

().< -

~=~g’a)(:T+l~+~g(a’‘15’)

and the appropriate factors

(:)nj md (:P+’)
respectively,

associated with each portion of the inte~al. This integral is there-
fore a function of R, snd some csre must be exercised in differentiating
the stream function with respect to R before the integration is carried
out.

For evaluation of the present example,
the functions Hj(v) and the corresponding

be used as am adequate approximation. Then

and (1~), the perturbation stream function
approximately as

the asymptotic values of
characteristicvalues will

according to equations (147)

V(2)(R,K) maybe written

. —— —- —.



.~stijfi(-)sti,,,pc.spdp

For actual calculation the perturbation through-flow velocity,
a.+.(,)

u(,) .A _ is of

interest ad w be &valuated fclrectly as
Rein@Ra@

where

(157)
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and

.

The distribution of the

2j3(
tan y.J= tan o~

02
(160)

- 0~

perturbation through-flow velocity can now be
calculated for the g(R) given by equations (154) by a straightforward
combination of analytical and numerical methods.

Some features may be noted, however, without carrying out the
actual calculations. The variations of the through-flow velocity is
governed, except very close to the blade row, by the lowest power of
R/~ occurring in the expansion given by equation (158), that is,

( l%)R
nl-1

. The rapid decay of the through-flow velocity perturbation

follows directly from the fact that the included cone angle !3?2- al

is only

12j - $.

at least

teristic

fi/12 and consequently the asymptotic values of the nj sre

Therefore, downstream of the blade row the perturbations decay

as fast as (R/~) 10”5. Thislarge value of the first chsrac-

number nl also determines the disappearance of the velocity

perturbation downstream of the blade row. For since the mean through-

( /%)flow velocity increases as R
-2

, the ratio of the perturbation

through-flow velocity then behaves as E.(R/%)=”5 do~stre~

of the blade row.

SUMMARY OF RESUUI’S

The flow of an incompremible inviscid fluid through a turbomachine
withblade rows consisting of an infinite number of similsx infinitely
thin blades has been investigated theoretically in order to examine and
describe the three-dimensional flow phenomena and to illustrate the
methods of calculation developed. The following results have been
obtained from the general analysis and from examples when the inner and
outer boundaries of the turbomachine and the flow conditions fsr upstream
of the blade row are prescribed.

(1) The velocity components in a plane through the sxis of sym-
metry are determined, through a nonlinear differential equation, by the

____ _——.. . —- — ___— ——
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angular momentum of the fluid about the s+cisand the blade force at the ‘
leading edge normal to the stream surfaces.

(2) The tifferential equation for the velocity components may be
linearized with good accuracy by assmning an approximate shape for the
stresm surfaces in the nonlinear terms.

(3) me Problem for the Wal t~bomachine maybe linearized, when
the distortion of the through-flow velocity is small, by assming the
stream surfaces to be concentric cylinders. The first-order linearized
flow through the axial.turbomachinemay be solved when any one of the
following combinations of conditions at the blades is prescribed.

(a) The blade loading, that is, the tangential force component
and the radial force at the leading edge

(b) The distribution of angular momentum and radial blade force
at the leading edge

(c) The distribution of
leading edge

(d) The distribution of

(4) For any specific problem

total head and radial blade force at the

blade shape

of sxial turbomachinesj the linearized
three-dimensional flow canbe calculated either .analytic&llyor by a
simple punched-card method.

(5) ca.1-c~atio~ of s~gle rotati~blde rows with aspect ratios
of 2 snd 2/3 and with a specific distribution of angular momentum indi-
cated that for blades of aspect ratio in excess of 2.0, a three-
dimensional flow takes place both upstream of the leading edge and down-
stream of the trailing edge sufficiently to have noticeable influence
on the blade angles. For blades of aspect ratio less than 1.0, essen-
tially all of the three-dimensional flow takes place within the blade
row.

(6) When the radial variation of the through-flow velocity is large,
the simple linearization is inadequate. A more accurate lineariza.
tion allows either analytic solution or a numerical solution employing
the ssme punched-card calculation described in the first-order solution.

(7) ~ eXPonenti~ aPProx-tion for the axial and radial velocity
components was developed whose simplicity allows investigation of complex
axial turbomachine configurations. Its use is illustrated by solutions.
for the multistage turbomachine and the solution for the single blade
row with prescribed shape.
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(8) The interferencebetween neighboring blade rows of a multi-
stage turbomachine may be neglected when the ratio of blade length to
distance between blade-row centers is less than 1.0. However, when
this ratio exceeds 3.0, the interference may become an hportant
influence on the flow pattern and a significant influence upon blade
shape.

(9) The change of axial velocity distribution caused by off-design
operation was calculated for a blade row which impsrted essentially
“solid body” rotation at design conditions. The results indicated that
the distortion of the axisl velocity profile was significantly less for
low than for high blade aspect ratios.

(10) The linearized flow through a conical turbomachine may be
solved completely if the original expression is linearized by assuming
in the nonlinear terms that the approximate stream surfaces are coaxial
cones with common vertex.

California Institute of Technology
Pasadena, Cslif., May 15, 1950

.

.
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0

TABLE I

()
V- OF ~C F’ONCrIONSU1 6nr1 :

rl

FOR HOBIMTIO ; 6= o.

r~rl

1.000000 0 0 0 0 0
1.033333 -.0207890 -.0215108 -.0201J26 -.019%?3’3 -.0187956
1.066667 -.0404s1 -.0384502 -.0352916 -.031m73 -.0261670
l.lKnooo -.0585022 -.0521257 -.0424266 -.0306421 -.0182290
1.133333 -.0746416 -.0603877 -.0402641 -.oti6722 -.om153
1.M56667 -.d385296 -.062605!3 -.OWZ$O -.0Qo0218
1.200000

.0176792
-.0999063 -.0588946 -.0E7596 .018x?55 .0246689

1.233333 -.1095733 -.0493220 .006341 .028920g .0172194
1.266667 -.1143978 -.0354039 .0234845 .0235556 .0000192
1.300000 -.1173144 -.0U34335 .0351638 .0174400 -.0167452
1.333333 -.1.173&3 -.000H42 .03gou6 .aloo275 -.0234020
1.366667 -.1144993 .0177638 .0343545 -.01696x3 -.0163575
1.400000 -.1059697 .0334945 .0224138 -.0271434 -.0000166
1.433333 -.lm259 .04561~ .0059270 -.0265408 .0159489
1.466667 -.090S173 .0530488 -.o114577 -.0164u3 .02231,22
1.500000 -.0783375 .0551.800 -.0s9897 -.0000182 .0156209
1.533333 -.06M207 .0519220 -.0345854 .016021.4 .0000096
1.566S67 -.0@2333 .0437050 -.0355445
1.600000

.0256576 -.0152597
-.03a653 .0314260 -.oa3t3149 .oz53987 -.0213618

1.633333 -.o166187 .0163537 -.0160054 .0155376 -.014499
1.666667 0 0 0 0 0

6 7 8
rlrl 9 10

1.000000 0 0 0 0 0
1.033333 -.0179205 -.0169171 -.0158001 -.0145855 -.01W06
1.066667 -.020732 -.0151.223 -.0096145 -.0044943 -.0000023
1.1OOOUO -.0065433 .00s725 .0094607 .0127511 .0123315
1.133333 .01.24248 .0172k5 .0150047 .008320 .0000039
1.165667 .0208482 .0E6417 .0000067 -.0098294
1.200000

-.ol?5079
.01~32 -.0054357 -.0146598 -.ou@96 -.0000046

1.233333 -.0062633 -.0171639 -.0099443 .0061313 .01.zY651
1.266667 -.0190028 -.0100!380 .0098138 .0125990 .0000048
1.300000 -.0159855 .m76763 .o14@87 -.0019021 -.0U8490
1.333333 -.0000129 .0167147 .0000073 -.0130000 -.0000046
1.366667 .0155757 .0075033 -.0137365 -.Coaolo .0D5563
1.400000 .OU31O51 -.W%@ -.@33945 .Ou?o%l .0000042
1.433333 .0Q58220 -.0159236 .orX12862 .0056626 -.o112843,
1.466667 -.Ol@z?ll -.oo493@3 .0132635 -.0100252 -.0000033
1.500000 -.0183851 .oll@37 .0000046 -.o@36691 .0110307
1.533333 -.0104’938 .0148249 -.o12g@l .0071592 .0000024
1.566667 .0055562 .0024157 -.0079327 .0106!366 -.0107934
L 600000 .016!X$8 -.0123424 .0078457 -.0036656 -.0000013
1.633333 .014E547 ..0134561 .0X25672 -.0U6009 .0105710
1.666667 0 0 0 0 0

——— — -- — —.
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TAME II

VALUESOF m?mHK!E FUI?CL’IONK(r,z; cL,fJ)FOR EU2RRTIO ~ -0.6
‘2

(a) : = 1.033333

%- ($/a)
1.066667 1.I.333331.2oomo L266&7 1.3333331.4000001.4665671.5333331.600000

0.033333 0.01053.30.Ollk’glo.olla93o.C09g12o.oa36490.0069980.005293o.co3481o.Ool@a
.100000 .004793.007204.007853.a)Ek5.006748.005639.004362.00372.co1516
.165667 .002645.co4510.005398.oc55a3.mm .004443.a)3511.002430.oo124g
.233333 .001616.00s24 .003716.003935.m3E60 .m3417 .co2754.001937.00U.X)7
.30QOO0 .001052.cml!%a.Oozp .00B70 .ooa3g .002590.~ .0015113.0Q0789
.366667 .coo707.m1342 .oo18n .002063.Ooe .001937.ool&u.00U56.000607
.433333 .coo489.w% .00B2 .001485.~u35 .001437.~w .own .000463
.yxooo .000342.0w661.ooog13.001072.mm .M106O .o@oo .000655.m348
.56%57 .0002&3.000470.anx554.oco774.oc@318.00077g.000665.000487.c#0260
.633333 .coo172.coo336.ax1472.000561.W95 .ooo5p .000490.00Q361.m192
.700000 .0001.24.cQ02k3.om3kl mm~ .cco43k.ceo418.cco361.000265.000142
.7666.57 .000099.oool~ .mo246 .00036.CQ0305.axm54 .oaolg5.000104
.833333 .000064.000126.000178.000214.(XI0230.ceo2!?3.Ooolgk.oco143.000076
.gm .000047.oomg2.olxll@.000U6 .oalla .000162.omlbl .CQol@ .000056
.966667 .000034.ooa%7.Ooom .Ooorcl.mom .Oooug.000103.000076.00U041
1.033333 .Ooooe .omlo48.00006!3.omca2 .ooo@39.cXloca7.oceon .000056.occo30
1.100coo .@Xoti .mo35 .alooyl.000060.omo65 .000063.omo55.000041.000022
1.166667 .coool.3.oooo~ .000036.mM@4 .occQ47.cwo46.000040.000030.000016
1.233333 .- .~w. .000Q26.000032.(XIC4)34.000033.Oooo@ .000022.ooco12
1.300000 .000007.omxn3 .wxnllg.cooo23.cQo@5 .000024.000021.ouoo16.mm

(b)~.1.100000

1.-7 1.3.333331.200000I..p66~71.3333331.4oooao1.4&6671.5333331.61xXXa
z- (s/a)

0.033333 o.ozaN80.0338450.0333050.03w60.0263700.0~5p o.o169470.0115780.o@9fi
.lm .Ohm .020138.023qo .022723.020637.017545.o1376!3.009516.004895
.166&67 .oo7’15g.0L337 .015772.016521.015652.033678.olc935.co7645.Q03960
.p33~33 .004549.oca384.0XEW3 .0U898 .Ohm .010442.008497.006014.0Q3137
.300000 .W3020.oo5Q35.007234.o@3544.0W97 .007864.oa6496.004642.00P434
.366667 .oom60 .cm3g33.005345.oo61k5.006301.005959.004!301.003533.003.861
.433333 .001434.oo275g.003797.oo4&3.004605.004333.003652.002659.001409
.- .W1OI.I..001956.00271.5.oo~ .003359.oo31gl.002717.001985.001Q55
.566657 .cQo71g..001397.Oomo .002314.002449.0023& .002Q06.001472.0007’85
.633333 .000515.001003.001406.001677.001785.ocll~ .001476.00uM6 .000580
.700000 .000371.000722.cmloti.001217.Oom .Ooa .001093.000799.000427
.766657 .W0267 .003522.W737 .000984.000947.co@16 .000792.000Y36.00031.3
.633333 .ocolg3.000378.cco534.m642 .00069g.000&a.0o05ao.m429 .000230
.900000 .000140.CQ0274.mm .000467.ooo5g?.000489.000424.rwo314.oQo169
.966%7 .000102.Ooolgg.oooa2 .m340 .000365.000355.000309.Ooow .000123
1.033333 .m3 .000145:cmw .0002W .000266.ooQ?5g.0002Z5.w167 .Ooocag
1.loooal .@Xm53 .W1O5 .000148.oootio.000194.ooo18g.@Xm65 .Ooora .000066
1.166667 .wXn3g .WO076 .000I.31.lxlo141.0Q0141.00013E.Ouol.m.oood3g.000048
1.233333 .amoz$.000056.00007g.0- .000103.ooolm .oQo@7 .000065.000035
1.3- .000021.000040.030057.000069.cnoo75.ceoo73.0cGQ64.m47 .cn)oi)~

— .

—.— . .
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TABLE II.- Continued

vAIJJm OF mFLUEWE FONC!ITON K(r, z; u,P) FOR HUBRA!rIo: = 0.6- continued

(c) $ = L 166667
.

\

r/rl

z - ($/n) I
,.0666671.133333l.moo 1.2666671.333333

I
..4o00ciI

~.037337
.-585
.0-
.017212
.ola353
.0&J523
.007018
.005155
.oo~
.002-762
.0x2018
.cak73
.001074
.ceo7i33
.com~
.oook16
.000304
.0002a
.0xu61
.wol17

.0227&3

.Olym
In&9$

.oo4571

.0031.81

.00a’o

.m=

.oOIJ.3g

.ouo919

t
).04-4703o.c54771o.q51300o.cA5u32
.023264 .035918.03TL76 .034490
.01.8643.024s .026564 .025738
.0U?636 .016907 .018%J0 .o18g74
;$63J .OllBp .o13618.o13gol

.009416 .ooy7g7 .O1OI56
.cQ43& .O@m9 .rM7069 .oo74@
.oo3c90.c04312 .~llo .oq53g8
.oo2zL7 .003107 .003701.003933
.001597.002244.002683 .002365
.001153 .Mm&5 .00194 .002807
.o@35 .OQlln .001416 .Oolyal
.000E05 .000955 .001030.001106
.0@40 .0Q0622 .0CQ748 .000906
.000319:wxAxxA .a@!.4 .00G587
.000232 .00037 .Ceo4q
.000169 .ooo25g .0ixEa3 .oao31.1
.CQOXZ2 .rMo174 .cm210 .W0226
.olMo99 .0001.26.oMn.53 .000165
.0M065 .0ow32 .Ooall .oi)o120

). Oxlgn
.023338
.018336
.014113
.010698
.009017
.005962
.@1407
.003246
.002392
.ca7k5
.00U?76
.w%
.000691
.000497
.M)0362
.000263
.0001g2
.00014C
“.000102

O.olwj’l0.010149
.0161.69.(M8330
.o12i36g.006-6T3
.o1- .005239
.007s0 .(n)403g
.005805 .003068
.004345:00m&
.OozEa
.002386.001273
.001756 .oaq33g
.00M38 .0006go
;mgh~ .0-00505

.000370

:Z3Z :E%
;=6 .M!@14

.000105
.000143 .OoOon
.000104 .000056
.000076 .00W41

0.033333
.100000
.166667
.233333
.3oooao
.366667
.433333
.500000
.s66667
.633333
.700000

::;%;
.9000fxl
.965667

.

.0om90

.CKIOE7

.ooo3q2

.cooz?k

.000163

.COfxLg

.c00@6
L033333
1.looaoo
1.M6667
1.233333
L 3m

.00c062

.000045

.00Q033

(d) $ = 1.233333

x ,.066657 ..266667..U3333 ..200000 ..333333..4oiloca

).041.352
.03&n2
.025345
.olg2r2
.0143$0
.010675
.007883
.005798
.@@53
.cKBIJ.3
.c022j’5
.Oolal
.00121.2
.oocb984
.0M44
.0cQ4E9
.000343
.ociE49
.ooQ182
.0cin32

). 0Z?34280.014523
. cKa5g .o11804
.017’917.ocg331
;():) .007213

.005494
.c07782 .004128
.005777 .003075
.- :O&2a;
.c03137
.002301 .Ooug
.001694.0xgo3
.oQ1231 .ooo6&l
.Ooc@ .CHXJ482
.000655 .000352
.MKJr713.CKKK57
.000349.ofxu87
.-5 .~337
.om186 .000100

1.021234
.015481
.01.lou
.007786
.005509
.oo3glg
.Cxxax
.002011
.001449
.021047
.cam
.00054.9
.’bxlz!gg
.cOl@o
.020211
.&lo153
.00011.1
.c001Y31
.ooc0y9
.MM43

L04Q967
.03Q532
.OzA?O
.ou@3
.olo@32
.CQ7615
.ci25454
.CXX924
.oQzt331
.cKE047
.oo148k
.001076
.oc07?31
.0005@
.000413
.CayjOl
.OcOm
.0001.59
.000n6
.-

1.06344’
.0427161
.029629
.02a365
.014841
.010623I
.@76n
xM&55i

.002897,

.c@094

.LY3ua

.anlo5

.000904

.000585

.aJo425

.00CJ309

.-

.CKKJ164

.Caalg

Lo-rm
.048435,
.03k072
.024qkl
.017427
.o1256J1
.003cs3
.006580
.004773
.W34E.5
.mu
.cMM832
.001333
.-69
.lMo705
.ooc514
.000374
.0Q0272
.cCag8
.m144

).063631
.047069
.034315
.02468
.01.8167
.013223
.c9626
.007007
.CQ5102
.mm
.00Z706
.001970
.001434
.W1045
.oc0761
JB&&

.@xE.g3

.m214

.000156

~.053%32
.041226
.031070
.023121
.017075
.ola59
.mm
.006741
.W25
.m3597
.002624
.oOlgl.3
.001395
.001017
.000741
.W39
.000394
.oboEf36
.000209
.cCa52

0.033333
.100000
.166667
.233333
.3-
.366667
.433333
.5m
.566667
.633333
.7m
.766667
.833333
.900000
.966667
L033333
1.loOooa
L 166667
1.233333
1.3o000a

_.-— —— —..—. —
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(e) ~ . 1.30XPJ0

0.033333
.10ofxlo
.16556-I
.233333
.300000
.36%57
.433333
.500000
.5&.667
.633333
.7@xFM
.76&s7
.833333
.-
.96%57
1.033333
1.100000
1.166&7
L 233333
l.yxKKHJ

o.o18n7 0.03352-7
.014473 .C@9.39
.Ola%?g .oa516
.c07’g69.o1570g
.CG5.810.011414
.004223.0Q%32
.003066.cD5@xJ
.- .@w
.cn)1617.003.69
.001174.@x?302
.O@z .oQ1674
.Oiloa .cKlK!17
.cKlo451.a@385
.000329.0a%44
.oJw23g .000470
.cKKl174.000341
.Ceolzq .cai1248
.- .oGa81
.000067.Oooly
.WOQ49 .0CMXW6

0.05.!3330o.0764&l
.042765.052902
.030934.037542
.02231 .026947
.016170.019459
.onn7 .014095
.009497.olo22g
.0GS169.007431
.034482.c@lo3
.oo325g .W3930
.CKE369 .a)*5g
.001724.Ooaal
.oora4 .oor514
.c0@13 .c01103
.CQ0665 .oc0902
.c#483 .lxlo594
.C03352 .lxu42f
.0ooa7 .Ocalo
.000187.00M!26
.c00136 .000L54

1.333333

0.ci304w
.05593
.03g8&
.Oam
.m
.o150g9
.01W78
.CQ7987
.CG5914
.004233
.M3@2
.c@244
.om634
.calgc

:%%%
.oci)459
.m334
.aM243
.COol’11

0.0690840.0542000.03n63
.051241.Oh&l .029291
.037497.03M98 .022413
.027378.0232= .o16843
.Olggn .olno7 .01.2517
.014574.or353 .0C9236
.Ole .mm .m6785
.m .oo6n6 .a14969
.005649.004904.003633
.c04117 .003578.002653
.mm SK&& .@31935
.002185 .c01412
.001.592.m1385 .cKno2g
.cKllly9.001010.Otxlno
.ooc845 .cc0735.000546
.m .000536.000398
.wo448 .000390.000290
.000326.oooa4 .a?oa.1

.Oooln

o.Olgug
.o151g2
.011.m
.0M898
.006654
.004926
.(!03627
.002651
.oolg47
.031424
.oolo3g
.W0758
.WS2
.000403
.-4
.cax214
.ooor56
.Ooom
.moo83
.C&B5a

1.0665671.I.33333l.mo 1.2665671.333333L4c00001.46a57 1.5333331.@Moo

:- (MtJ

0.033333 O::%s; 0.0326910.0501760.067342o.@523 o.@3zE120.0662650.04611.50.023654
.100000 .025742.033567.04947 .057390.05n15 .048595.034878.018252
.16%67 .0v3800.olg703.029974.036547.0409s5.040539.035160.Oam .013660
.233333 .007423.014804.Oaw .026G35.u2M@ .W1OO .025410.Olealxl.010055
.3wxwo .o@~ .O11oo1.o15934.019471.021335.021014.o183a7.o13659.007332
.366667 .0041w .o@3117.Olla .014XA .015491.Olzzz?.013322.Oogglg.005330
.433333 .mm .cc%62.o@505.010s .Ow .Olld@.c@664 .m7 .oo38n
.yxxm .lxm?lg.004367.oo6217.CX)7552.@3u6 .a$027.cQ7016.005w .-10
&& .an625 .oo31g2.co4539

.a)33rl:2?%4 :z3g :%g :=~ .‘m .-41.anlE7 .ofJ2332 .0027%.001483
.700000 .o@67 .001702.0324u .cQ&?3 .cM)lu63.003099.002695.OozQm .001078
.766667 .@X631 .00I.241.w175g .- .002302.co@@ .00U61.001459.000784
.833333 .@m461.000904.mra3 .mx.ml .00ti76.w1637 .Ool@ .coIo62.wo570
.900000 .(X)0336~oy6~ .aXg35 .OOIJ30.Oolz!a.Oollgl.001038.W0772 .000415
.966667 .cXw245 .0#690.oXf123.oc@!@.@@67 .lXQ756.cco562.030302
1.033333 .ooo17g.Ww .IXI0496.- .W7 .000631.0CQ550.CQokca.m220
1.lcoooo .WI.30 .W?m .m361 .om437.tin .aX14&l.mkol .mo@ .0001&l
1.16%67 .olX@4.lxo185.000263.00031.8.000343.000334.0W232 .~21.7.Wti
1.233333 .oom69 .om135 .Oool%?.wo232 .mao .@m244 .0#m2 .0001.58.oo@5
1.3owQo .-0 .Wcc98.mlb .Ocom .0001.82.CQ0177.owl% .ann15 .mo62
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!CARLXH.- Contluued

VAUJFSOF IBKUJRHCEFIJIKTION@r, z; a,p) FORHORRJ?HO ~ = 0.6- CorMmed
~2

.

.

(d : - L 433333

L.333333

2.068754
.05G3?5
.03j’ofl
.02@65
.o19622
.0SE63
.010398
.007570
.@?55J.3
.W4014
.00s23
.002E3
.0Q550
.Oou
.CKUb%?2
.000599
.ooi)436
.000317
:Ce02g

\

r/rl

z- ($/l’l)

0.033333

.066657

.012753

.Olo%t

.cKM194

.a16333

.004822

.003625

.-

.Cal%%

.031472

.001091

.mz

.cnH3c

.CMM423

.m3@

.0002X

.000165

.Ooolx

.000G37

1.1.33333

0.026308
.021@
.016578

&
.O1.q4
.W
.oo~
.~3k5
.Oa@k
.CK@?03
.062130
.oou5e
.00IJ.39
.(XKF332
.m607
.C@ow
.030323
.COO*
.woln
.LMXM.&
.om@l

I

l.mmoo1.%6657 ..40COO0

1.090373
.055035
.03873
.cr27595
.olg812
.014284
.O1OB
.oo74a3
.C.@l.s3
.Ca@2
.CKM365
.002cBb
.ooH6
.Ca.lo2
.C00902
.oC@34
.000425
.000303
.0-
.WoI.64

..465567

Lo757@
.Q51OG
.035435
.024964
.Olm
.Oli?nk
.W143
.006597
.cm)477’1
.cx33457
.0w@3
.001821
.oo*&
.IX)0963
.000700
.Ww
.000370
.-o
.(xIou6
.000143

I

..5333331.600Q00

3.040266
.031978
.024691
.03.8TL6

o. 054M2 ZiiJziiLC54094o.028167
.1CW30
.166567

. 04Z97

.Om-ti

.023-fz3

. Olna

.o12e85

.233333

. 3000(XI

.366667

.019003.010337

.013465.0073.6

.@W601 .005205

.00a

.(M49E! :%%%

.003569.oo~

.oom2 .001393

.ca.en .001007

.lxm% .ma.
IO@; ;Ommg

.ooQ521 .MxM30

.000379.000204

.C@3q5 .000148

.000201.000109

.003146.0iBY18

.014010

.010402

.007681

.CQ5650

.004144

.oaD33

.cKE217

.001619

.001182

.00@362

.000628

.00045!3

.000334

.om243

.000177

.433333

.5000c@

.566667

.633333

.7oOow

.7&667

.833333

.900000

.966667
1.033333
1.100000
I.1.66667

.c@450

.LY3691.6

.005054

.003691

.002693

.0CELE763

.00143

.allo43

.00076C

.W!53

.M0404

.000294

.Oooak1.233333
1.300000 .Ooocw .OCQI.& .WO156 .CJXI061.ti7

,-

71.I.333331.2C00a T1.3333331.- T-.5333331.6000al,.066667 1.266667 .. W7

~.CKW34
.~o:
.006174
.0048%
.003734
.002$33(
.-
.00%
.Oollfi
.ln)0!36j
.oC063f
.000461
.alo344
.w~
.mole:
.00013:
.Q30@
.-
.m;
.00003!

o.olg@4
.ou~z
.oms
.W376
.00748:
.005656
.00423:
.oo314t
.002324
.ool~
.ci)l@
.oocg2c
.0C0675
.w~
.0CK13S
.000262
.Ooolgc

o.oEg694
.0239~
.0U38C5
.01447(
.Ologn
.009225
.006m
.@522
.&33330
.002444
.Came
.cOl.3@
.m7
.00@5
.Ceo51c
.000371
.m27c
.mow
. OW14J

.00010

0.0403?5
.0N961
.024604
.o1859c
.o1388g
.010239
.Oo-lyy
.005570
.@1091
JX@J;

.oo~l

.OOU61

.00@34.f

.000616

.00044s

.Ooxa

.C0023g

.030174

.OGol.a

o.G51362
.03$PI.2
.ozg269
.0=577
.015812
.011551
.LxsN.27
.CH161.42
.004475
.CO=
.002374
.001729
.Mw2.5g
.000317
.000667
.003486
.Ca0354
.000259
.Ooolea
.CC0137

O.06H0
.044475
.03787
.-
.016301
.013.729
.009462
.a16n9
.004433
.oo3a4
.002334
.00M96
.001233
.-7
.000653
.000475
.000345
.Oooal
.000183
.OCa.33

).o@357
.045187
.030n6
.-3
.014956
.olola7
.Oonn
.m435
.003917
.00s330
.0CQ049
.001486
.COlcq-g
.lxlo784
.0C0569
.C0041.5
.wo302
.CGQ219
.OoOla
.c00u6

):~7g 0.031752
.02U%3

.02b721 .01.3894

.o1676h .003333

.on596 .006391

.008K3 .004448

.Q5753 .cKB133

.004103.Ceti

.002943.001593

.002Eo .a@!.6

.00s32 .OcMxl&i

.Oo=w .m7

.00C.904.000433

.oG@34 .000314

.0CKA24 .Ceow

.000309.0001.66

.W02a5 .ocQ1.21

.000163.oCKl@37

.000118 .000064

.aM&36 .000046

.30CCO0

::=

%%J

.7CWOO0

.766657

.833333

E%%
1.033333
1.100000
1.165!567
1.233333
1.3cQooo

.

. Mlom

. O&no]

.00007*

— — .—
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TABLE H.- Conzlud.ed

vALnEsOF INFDJERC!BFOHCMON K(r,z;u,13)FORHOERATIO ~ = 0.6- concluded
r2

(i) :-1.566667

x
0.033333
.lm
.M&x7
.233333
.3CKKMM
.365667
.433333
.5m
.566-557
.633333
.700000
.766&7
.833333
.goooal
.9&667
1.033333
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Figure l.- Coordinate eyotem and velocity components in aid turbomachine.
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Figure 4.- Relationship between blade normal, blade force, and relative
velocity.
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axial. tubomachine. Vertical scale magnified.



c L 1
,

I

t

I

1.2

.8 \

Distortion

factor

.4

0
0 .5 I.0 1.s 2.0 2.5 3.0

Blade spacing ratio, S

Figure 15. - Variation of blade-row inkerferenoe factor with blade

ratio for parkicuhr multistage turbomachine uti~zing simd.hr

X=ll.

aspect

stages.

I



106 NAC.ATN 2614

r- rl

‘2- ‘1

1.0 \ \

\

.8 \
\ d-+.%)‘-

Y
/ .2,0

.6 A

/ ‘
1.0

/
.5

.4 / / ‘

\ /

.2 \

A
T

n.
=.3 -.2 -.I o .1 .2 .3

%&!._!(’+&J
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Figure 19.- Coordinate system, velocity, and worticity component
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